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Abstract: In structural deformation analysis the behaviour of the monitored structure is 
typically described in a dynamic model, by deducing a weighting or transfer function. Its 
parameters can be estimated from the recorded influencing and deformation signals, using 
system theory and time series or regression analysis. The analysing functions or the 
adjustment models can be determined using the entire data set, if the assumption of 
stationarity up to the 2nd order is fulfilled. This is the case if the monitoring activity extends 
over a long time and the influences on the structure maintain their statistical properties from a 
long-term point of view.  
However due to the higher recording rates made possible by some modern sensors also short-
term deformations and influencing factors like wind or traffic, which expose a more irregular 
pattern, can be registered and included in the investigation of the structures’ behaviour. In 
these cases the stationarity assumption needs a more careful analysis. The data segments with 
homogeneous statistical properties have to be identified and different model parameters have 
to be estimated for each of them.  
This paper deals with an approach for the detection of the change-points in the statistical 
properties of the data. The method is based on the likelihood function. In this approach the 
change-points are estimated by minimising a penalised contrast function. To get a better 
insight in the behaviour of the structure when several effects overlap, the signals are first 
decomposed using the Discrete Wavelet Transform. The change-point method is applied to 
the obtained signal components. The performance of the approach is assessed by analysing 
simulated and real data, recorded during the monitoring of a wind energy turbine and a 
vertical lift bridge. 

1. Introduction 
A main objective of deformation analysis is to derive from the recorded influences and 
deformations the structures behaviour in a system theoretical approach. In the non-parametric 
modelling approach, to which this paper mainly refers, the system is described by generic 
weighting or transfer functions. The standard theory of time series analysis used to determine 
these functions assumes at least weak stationarity of the recorded data series. In a global 
perspective, after removing the trend, this condition can be regarded as fulfilled when the 
geodetically monitored processes are slowly-varying and periodic. In this case a single 
weighting or transfer function describes the properties of the analysed object.  
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In some particular cases like the variation in magnitude and direction of influences (like in the 
case of wind or traffic), short-termed monitoring with sensors that facilitates high recording 
rates (such as GPS, inclinometers or laserscanners) or unusual events occurring during the 
observation period, the acceptance of weak stationarity requires a more thorough analysis. It 
will be considered however, that the effects causing non-stationarity are localised in relation 
to the length of the series and induce a change in the mean and/or variance of the data. 
Between these changing times the series is assumed to be stationary. Thus, if one identifies 
the location of the changes, the standard modelling tools can still be used on the homogeneous 
part of data. Therefore a method, like the one presented in this paper is needed. If the recorded 
deformation signal is caused by more than one influence, it might be difficult to detect the one 
causing the change. In this case it is purposed to decompose the signal into frequency 
components using a Discrete Wavelet Transform (DWT) and to apply the detection method to 
each one of them. 

This paper is organised as follows: chapter two presents the method used for change-point 
detection. A brief discussion on the DWT in the third chapter is followed by the presentation 
of the results obtained by applying this purposed approach to deformation signals recorded at 
a vertical lifting bridge and at a wind energy turbine (w.e.t). The paper ends with a summary 
and an outlook. 

2. Detection of Change-Points in Time Series of Observations 

The scope of the change-point problem is to detect locations where the statistical properties of 
the system change and to estimate the magnitude of this change. The detection problem can 
be formulated either online or off-line depending on the availability of the entire time series 
for recovering the configuration of the change-points. The method presented in this paper 
belongs to the second category. It was developed by Lavielle [5],[6] and is based on the 
likelihood function. The used approach is quite different from other strategies that assess a 
change by hypothesis testing because it estimates the entire configuration of change-points at 
a time. 

In order to describe the pure estimation process we will begin with considering the simplified 
situation when the number of changes is known a priori and we need to estimate only their 
configuration and the parameter values. In the second part of the chapter we will deal with the 
case of an unknown number of change-points. 

2.1. Detecting the configuration of a known number of change-points 
Let {z1, z2,...,zn} be a general set of n observations of a piecewise stationary process Z with a 
density function f depending on some unknown parameters θ. By piecewise stationarity is 
meant that there are K<n moments at which changes in the statistical properties of the 
observations occur. Between these moments the process is considered as stationary. The 
primary goal in this section is to estimate the locations of the K change-points and the 
parameters θ according to a minimising criterion. The minimised function is called contrast 
function γ and the obtained estimators are named minimum contrast estimators. This principle 
is similar to the approaches used in geodetic parameter estimation. In fact minimum contrast 
estimators are a more general class of estimators that includes least squares (ls), minimum L1-
norm or maximum-likelihood (ml). They were introduced in order to derive properties 
(especially related to convergence) for the above-mentioned estimators in a unified 
framework. Useful convergence properties have been obtained by Birge et al. [3] under some 
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necessary assumptions which control the regularity of the contrast function γ and the 
complexity of the parameter space Θ. By expressing the contrast function γ in the estimation 
process with respect to the empirical data, one obtains the empirical contrast γn. The minimum 
contrast estimator  is minimising the empirical contrast: θ̂

( )( ) ( )( ) ( )(
n

n n i    i 1

1ˆf inf f inf z , f
nθ ∈ Θ θ ∈ Θ =

⎛γ θ = γ θ = γ θ∑⎜
⎝ ⎠

)⎞⎟  (1) 

For density estimation problems the log-likelihood function l is a proper choice of a contrast 
function provided that the density function is continuous. This condition is satisfied by the 
normal density function which is also appropriate if the changing parameters θ refers to the 
mean µ and/or the variance σ2 of the observations. The changing parameters are calculated as 
the ml-estimates from the observations Zk belonging to each stationary segment k between the 
times tk-1+1 and tk. The other parameters are calculated using the entire realisation Zi. The 
configuration τ of the changes is then obtained by minimising the empirical contrast: 
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K
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When the changes affect the mean and the variance the log-likelihood function in (2) has the 
following structure: 
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where nk is number of samples in the kth stationary set. Similar relations can be obtained if the 
changes affect either the mean or the variance. Lavielle has shown in [6], that if the estimation 
of parameters θ is consistent, then the estimation of the change-point configuration is also 
consistent and converges to the true configuration at the rate of Ο(n-1). Furthermore, this 
convergence rate is independent from the covariance structure of the process. 

The minimising of (2) can be solved only using a combinatorial approach because τ is not 
explicitly in the functional model. The computational burden can be reduced if one adopts a 
recursive scheme by minimising (2) for subsequent numbers of change-points. Therefore the 
log-likelihood functions have to be computed for all ordered subsets of the form {zi, zi+1,...,zj | 
1 ≤ i ≤ j ≤ n } in order to detect the current configuration of stationary segments for each 
subset of the form Zi = {z1, z2,...,zi} with 1 ≤ i ≤ n. This approach is also useful in the case of 
an unknown number of stationary segments which will be discussed in the next section. 

2.2. Detecting the configuration of an unknown number of change-points 
This section deals with a more practical situation in the analysis of real data when the number 
K of stationary subsets is unknown. In this case the minimisation function (2) has to be 
extended with a penalisation factor that includes this additional unknown: 

( ) ( )k 1 k 1 k

K

n t 1 t 2 t k
k 1

1 ˆl z , z ,..., z ; pen(K) min .
n − −+ +

=

⎡ ⎤γ τ = − θ + →∑⎢ ⎥⎣ ⎦
 (4) 

Solving this minimisation problem requires some prior knowledge about the maximum 
number of change-points Kmax. Thus, with a proper choice of the penalisation factor, one may 
apply the computation procedure described in 2.1 with K=Kmax. The estimation problem is 
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now enhanced by an aspect of model selection. It is known from similar model selection 
problems that an optimal penalisation factor will compensate for the decrease of the empirical 
contrast (2) after attaining a plausible number of change-points. 

In order to get a better insight to our particular problem of model selection we have analysed 
a series with 500 independent, standard normally distributed samples for cases when (a) no 
change of the statistical properties occur and (b) when two changes of the mean occur after 
200 and 400 samples respectively. A typical decrease of the empirical contrast (2) for Kmax 
taking values from 1 to 10 is represented in Fig. 1. 

It can be noticed, that the empirical contrast 
decreases regularly in the case without 
changes, while in the right plot a 
discontinuity clearly shows up corresponding 
to the correct number of stationary parts of 
the series. However, for values of Kmax 
increased beyond this discontinuity, the 
decrease of the function is again uniform. 
This example illustrates, that the choice of 
the penalty term has to be related to the 
decrease of the empirical contrast function 
for values of Kmax higher than the “true” 
number of stationary segments, or, to express 
that in mathematical terms, to the 
convergence or the risk of the estimate. For 
the discussed example the choice of a linear 
model depending on Kmax seems to be 
appropriate. 
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points. The differences between the identification rates were less than 1% but those obtained 
in the robust approach were systematically better. This is why the following presentations will 
refer to this one only. 

The analysed series were obtained from uncorrelated, standard normally distributed variables. 
Their lengths were of 500, 1000 and 2000 samples when the change occurred in the middle 
and of 275, 550 and 1100 when only 10% of the data in the first part followed after the 
change. The magnitude of change was set at 0.3σ, 0.5σ, 0.8σ and 1.0σ. For each combination 
of the factors 10,000 signal samples were generated and analysed. 

A dependence of detection per-
formances on the changes magnitude 
and on the length of the series was 
clearly noticeable for both locations 
of the changes. In the case of small 
changes the choice of a linear penalty 
term has led to better results while 
for larger changes and data lengths 
the linear-logarithmic performed 
better. For jumps of the order of 
noise variance the logarithmic 
penalisation led to ideal detection 
rates while the performances of the 
linear model seem to stagnate at a 
level of 95% in spite of an increased 
data length. Furthermore, these 
results show that the ability to detect sm
aspect in geodetic monitoring activities
large data basis. Fig. 2 presents the resu

This analysis of synthetic signals, althou
a good basis for understanding advantag
these results can be of little help, if the
frequency component because the allo
might be difficult. One way to handle th
and to apply the change-point detect
accomplished with a wavelet-transform 
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respectively with pass-bands 0-1/2j+1 and 1/2j+1 – 1/2j [8]. Therefore the jth decomposition 
level is referred by the scale 2j representing the spectral components of the signal contained in 
the wavelet coefficients.  

A powerful characteristic of the DWT is its energy preserving property allowing the extension 
of Parseval’s relation to the time-frequency domain. Since energy and variance are 
proportional measures, the DWT decomposes also the variance over the scales. Thus the set 
of wavelet coefficients {vj} represents the contribution to the total energy of the signal due to 
changes with frequencies in the corresponding pass-band of the scale 2j and express the build- 
up in time of this variance component. It is therefore possible, to assess the variance 
homogeneity of individual signal components by applying a method for variance change 
detection on the corresponding series of wavelet coefficients and to calculate only the 
respective model parameters on homogeneous intervals [7]. 

On the other hand a relation between the wavelet coefficients and the signals mean cannot be 
established because all wavelet coefficients have expected value equal to zero by the 
definition, thus being centred on zero regardless of the signals level. Therefore, the 
information about the mean must be recovered from the scaling coefficients. However, a 
straightforward detection of mean changes from the scaling coefficients is not possible, 
because local characteristics of the signal appear different in the coefficients of a DWT, 
depending on where it “breaks” into the signal. Thus, the shape or pattern of the signal can 
look completely changed in the scaling coefficients. This translation dependency of the DWT 
is caused by the downsampling step performed at each level and has obviously negative 
influence on locating the change in mean.  

One way to circumvent the downsampling step is to control the resolution level at which the 
signal is analysed by introducing a zero between every term of the wavelet and the scaling 
filters. This upsampling operation is denoted in the following equation by the symbol ( )2↑ . 
In this case, the relation (5) for the jth decomposition level turns to: 

( ) ( )j 1 j 1
j,n j 1,n k j,n j 1,n k

k Z k k Z k
u 2 h u   and v 2 g u

−
− − − −

∈ ∈

⎛ ⎞ ⎛ ⎞= ↑ ⋅ = ↑ ⋅∑ ∑⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
 (6) 

These relations correspond in structure to a convolution, and thus fulfil the condition of 
translation-invariance. The downside of this approach is the abandonment of the orthogonality 
property. Nonetheless, Percival et al. [8] have proven that the energy preserving property also 
holds in the case of the Maximal Overlap DWT (MODWT), as they named the modified 
transformation (6). Thus, the method for detecting variance changes can be applied to the 
wavelet coefficients obtained by (6) too. Additionally, the local characteristics in the signal 
and in the resulting coefficients can be lined up such that the method for detecting changes in 
the mean can be applied to the scaling coefficients.  

In this study both kinds of transformations were used to decompose the signals, depending on 
the type of expected changes. The change point detection method was used to assess for 
variance changes in the wavelet coefficients and mean changes in the scaling coefficients. The 
main results are presented in the next chapter. 

4. Automatic Change-Point Detection for Structural Deformation Analysis 
A first application of the discussed change-point method aims to study the deformations of a 
vertical lift bridge due to influences of traffic. This is a trivial task if it is performed on a 
manageable amount of data. However, as this bridge is an aged structure built in 1934 an 
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increased number of verification measurements might be necessary to assure its safety and 
functionality. Hence, the amount of data can increase rapidly. In this case some degree of 
automation can support their evaluation. 

The analysed time series were recorded with a Schaevitz servo-inclinometer that is highly 
resistant against vibrations. The sensor was placed next to the carriage way, 16.6 m far from 
the end of the lifting part of the bridge. Its analogue output signal was sampled at a rate of 
50 Hz. The measurements were done at an air temperature of 3°C. The traffic was logged by 
video. 

Fig. 3 illustrates exemplarily a deformation signal recorded over a time span of 2.5 minutes 
and its smooth version filtered with a moving average filter with a length of 50 values. The 
step-line indicates the traffic load. A load caused by a vehicle is indicated during its total 
passing time. 
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detection will not converge after a reasonable number of iterations. The intervals in Fig. 8 are 
obtained by setting the bounds manually at the points where the slope of the CCSS-line 
changes. They agree very well with the segments in Fig. 6. 

The features identified in the deformation signal can be used in a refined model. The 
performances of such a refined model are briefly shown in a second example that refers to the 
deformations of the pylon of a w. e. t. due to wind loads. A detailed presentation of this study 
was given in [7]. The analysed data were recorded with a sampling rate of 6.1 Hz using the 
same Schaevitz-inclinometer. During this time the w.e.t. had a nearly constant power output 
of 110 KW and a rotor velocity of 12 rpm. Due to the changing wind direction the orientation 
of the nacelle and the blades’ pitch varied. The main periodicities contained in the data are on 
the first and second eigenfrequency of the pylon and on rotation induced frequencies like the 
rotors frequency of 0.2 Hz, the blade frequency of 0.6 Hz and higher harmonics of the latter. 
If all amplitudes and phases of the dominant frequencies are estimated in a common 
adjustment model, the spectrum of the residuals shown in Fig. 9 is obtained. 
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detected with the CCSS algorithm. Their 
ut there were also some small differences at 

 cause for these differences. 

parately on each homogeneous interval of 
efficients were recomposed to an overall 
avelet transform and its inverse caused no 

hus the residuals between the modelled and 
 the model. The standard deviation of these 
he global model. This improvement is also 
ins only reduced amplitudes at the dominant 



  
 
 
 
5. Summary and Outlook 
The method used in this paper to detect 
changes of the mean and/or variance of time 
series is based on the maximisation of the 
likelihood-function. It uses a penalised 
function if the number of stationary segments 
is unknown. The choice of the penalty factor 
depends on the complexity of the search 
space for the bounds. The performances of 
various penalty functions were assessed on 
simulated signals with different 
configurations of the change-points. 
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By applying the detection method directly to 
the original signal the identification of the 
specific influence causing the change 
becomes more complicated. Therefore it was pr
transform and check the wavelet and scaling 
mean respectively. The advantages of this appro
of the behaviour of a bridge when influenced
influenced by wind. 

In this analysis the data were treated as b
Accounting for existing correlations in the m
distributions and comparisons with other chang
work. 
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