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Abstract: GPS is an attractive technique for applications in engineering geodesy such as the 
monitoring of large structures’ deformations or of landslides. In order to correctly assess the 
representativity of the derived motion and deformation terms, the effective uncertainty budget 
(due to random variability and remaining systematics) has to be modelled adequately. In this 
study, deterministic error bands (intervals) are used to describe the amount of the remaining 
systematics in the GPS data. They consist of upper and lower bounds for the observed values 
which are obtained using a forward modelling approach. The resulting observation intervals 
quantify the impact of the uncertainty about standard correction models. Their magnitudes 
depend on the whole satellite-receiver geometry. Finally these intervals are linearly 
transferred to the estimated point coordinates.  
 
In the paper, two main outcomes are presented and discussed for local monitoring networks 
(baseline lengths smaller than 5 km). First, for 24h sessions and horizontal networks the 
maximum uncertainty occurs in baseline direction. Most of this uncertainty is significantly 
mitigated using a double differencing approach. In case of large height differences in the 
network the interval radii of the height components dominate the effective uncertainty budget. 
This reflects mainly the uncertainty due to tropospherical effects. It is not mitigated by double 
differencing. Second, it is shown that the size of the coordinates interval radii depend on the 
“datum definition”, i.e. the strategy to solve the ill-conditioned normal equation in small GPS 
networks when using double differences. An optimal strategy can be defined as minimizing 
the maximum interval radius.  
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1. Introduction  
Systematic effects are still a major error source in high precision GPS monitoring applications 
since they lead to apparent object deformations that are often difficult to separate from the 
real ones. Up to now, many authors analysed systematic effects mainly for GPS baselines, 
like e.g., [2]. Especially in the context of network RTK a multitude of correction strategies 
were developed; see, e.g., [6] for an overview.  

It is well known that not all systematic effects can be removed during the data pre-processing 
or by additional parameterization. The remaining uncertainty is an additional component of 
the uncertainty budget. In Geodesy, [5] introduced the notion imprecision for this type of 
uncertainty and proposed to model it by means of deterministic error bands which are 
described by real intervals. They enclose the amount of uncertainty about the remaining 
systematics by an upper and a lower bound. The midpoints of the bands are often associated 
with the observed values. The corresponding mathematical theories to describe this type of 
uncertainty are interval mathematics or fuzzy theory.  

In this paper two special topics are analyzed which are concerned with the error band 
approach: (i) the impact of large height differences in small GPS monitoring networks, (ii) the 
impact of the regularisation method needed for the inversion of the normal equations matrix, 
when double differencing (DD) is applied. The results are exclusively considered in the 
coordinate domain.  

2. Mathematical concepts 
In this section we briefly review the mathematical concepts of the error band approach which 
is based on interval mathematics. Further details on interval mathematics can be found in the 
textbooks of [1] or [4]. Applications to the GPS analysis were developed in [10-13]. 

Assuming resolved ambiguities, the interval-extension of the least-squares estimator allows to 
propagate interval-described observation imprecision to the estimated parameters such as the 
coordinates of the network points 

[ ] ( )( )[ ]ˆd
−

= T Tx A PA A P y , (1) 

where  

[y]  is the 1n×  interval-vector of observed-minus-computed values of GPS  
   phase DD reflecting the observation imprecision, 
P  the regular weight matrix of DD, 
[ ]ˆdx  the resulting 1u×  interval-vector of the estimated parameters.  

For small GPS networks, the ( n u× ) configuration matrix A has an approximate rank 
deficiency of three as the origin of the network is ill-determined after DD. Therefore the 
normal equations matrix ( TA PA ) has to be stabilised before inversion using some sufficient 
additional constraints. This can be represented using a generalized inverse ( )−TA PA . 

As an alternative to the notation given in Eq. (1), the interval vector of parameters can be 
represented by its midpoint and radius [ ] [ ]= − +ˆ ˆ ˆ ˆ ˆd d d ,d dm r m rx x x x x , with 

( )−=ˆd T T
m mx A PA A P y , (2a) 
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( )−=ˆd T T
r rx A PA A P y , (2b) 

where ⋅  denotes the element-by-element absolute value of the matrix product. If symmetric 

observation intervals [ ] [ ]m r m ry = y - y , y + y  are assumed and if the actual vector of 
observations is identified with my , the midpoint formula (2a) equals the classical least-
squares estimator. The vector of interval radii (2b) describes the radius of the error bands for 
the estimated coordinates. 

Due to the sub-distributivity property of interval vectors 

( )[ ] [ ]( )⊆F G w F G w , (3) 

Eq.(1) overestimates the factual range of the propagated observation imprecision which is 
exactly given by the zonotope Z, cf. [9]: 

( ) [ ]{ }uˆ ˆZ d d ,
−

= ∈ = ∈T Tx x A PA A Py y y . (4) 

Considering the mathematical formulation of the pre-processing steps in a linearized form, the 
observation interval radii can be reformulated in terms of the imprecision (interval radii) sr of 
some basic influence parameters. That means that sr quantifies of the uncertainty about (or 
representativity of) the used values for, e.g., the temperature or the vertical total electron 
content (VTEC), cf. [13] for a detailed discussion 

=r ry M F s , (5) 

where the matrix M stands for the mathematical operations (like double-differencing). The 
matrix F reflects the linearized functional relationship between the observation and the 
influence parameters. 

The zonotope according to Eq. (4) can be reformulated as 

[ ]{ }ˆ ˆZ d d= ∈ = ∈ −x x K υ, υ 1,1 , with (6) 

( ) ( )−
diagT T

rK = A PA A P M F s , (7) 

and ( )1 1, ,= T1  the 1infln ×  vector of ones. The number of considered influence parameters 
is denoted by infln .The matrix K can be used to explain the transfer of the imprecision of basic 
influence parameters to the estimated parameters. With K, the vector of interval radii reads 

1
ˆd =rx K , where ⋅

1
 is the row norm of matrices. 

3. Impact of height differences 

3.1. Basic scenario: equal station heights 
In the following we will analyse different aspects of the transfers of imprecision in small GPS 
networks. These studies are based on simulations assuming typical and exemplary 
imprecision rs  for the basic influence parameters, cf. [13]. Three types of influence 
parameters can be distinguished: (i) the constants used in the apriori correction models, (ii) 
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the parameters used in the apriori correction models, and (iii) auxiliary information like 
satellite orbits or antenna phase center offsets (PCO).  

If there isn’t any explicit quality information about influence parameters of type (i), an error 
band radius sr of 0.5 of the last significant digit can be used. For type (ii) parameters, we used 
in this simulation studies rather small error band of ±1.5 °C (temperature), ±1.5 mbar 
(pressure) and ±1.5 mbar (partial water vapour pressure), respectively, as well as 2

1510 el
m

 for 
the VTEC. 

For the simulation, a 24-h constellation (DAY 303 2005) is used in order to assure a most 
homogeneous satellite sky coverage. The ambiguities were assumed to be resolved in a 
previous step. DD were computed for L1 phase observation. Different baselines were 
considered with lengths varying from 1 km to 5 km and orientations from 0° to 180° in 
azimuth. The height difference between the endpoints was set to 0 m. The coordinates of one 
endpoint were held fixed in [47°, 12°, 100 m]. 

Figure 1: Interval radii for the east component (left) and height component (right) in mm 

Figure 1 shows the resulting interval radii for the east and height component; please note the 
different scalings on the z-axes. Two main characteristics can be noted:  

(1) Since most of the considered systematic effects are distance dependent ([2]), a maximum 
increase of the coordinate imprecision (i.e. the interval radii) with the baseline length of 
0.05 ppm was found. Consequently the interval radii in East and North are larger than the 
interval radius in Height. Maximum values in this simulation are Nr,max = 0.25 mm, Er , max = 
0.21 mm, and Hr, max = 0.06 mm.  

(2) Regarding the east and north component when varying the baseline orientation, it can be 
seen that the maximum amplitudes are shifted by 90°, i.e. that the interval radii are maximum 
in baseline direction.  

Note that for short baselines the stochastic uncertainty measures (like, e.g., the formal point 
confidence ellipsoids) do not vary with the baseline orientation; they only slightly increase 
with the baseline length. See [8] for a detailed discussion on the shape and the orientation of 
these ellipsoids. Here the formal standard deviations are: 0 28mmN .σ = , 0 20mmE .σ = , and 

0 50mmH .σ = . 

The contribution of the different remaining systematic effects to the coordinate interval radii 
can be quantified and visualized based on the column vectors of K. Each column vector is 
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associated with one basic influence parameter. The vector indicates the spatial direction in the 
coordinate domain in which the corresponding influence parameter contributes to the 
coordinate imprecision. The norm of the vector quantifies the magnitude of this contribution.  

Figure 2: Contribution of basic influence parameters to the coordinate imprecision:  
Left: Azimuth-elevation diagram of the directions of contribution (dashed line: baseline),  

Right: Magnitude of the contributions in mm 

Figure 2 shows the contribution of the basic influence parameters to the coordinate 
imprecision exemplarily for a 5 km baseline oriented in an azimuth direction of 45°. Most of 
the influence parameters contribute in direction of the baseline (dotted line). For the values 
used in this simulation study, the ionospheric (7-10) and tropospheric effects (11-14) 
contribute maximum. The uncertainty about the radial (1) and the along track (2) as well as 
the phase center offsets in North and East (4, 5) act perpendicular to the baseline.  

The column vectors of the matrix K are the set of generators (edge vectors) of the zonotope Z 
that quantifies the point imprecision. Figure 3 shows the zonotope and the enclosing interval 
box exemplarily for a 5 km baseline oriented in an azimuth direction of 45°.  

  
Figure 3: Zonotopes describing the factual range of coordinate imprecision for the endpoint 

of a 5 km baseline oriented in azimuth 45°. 
Left: no height differences between the endpoints (according to Section 3.1) 

Right: height difference of 100 m between the endpoints (according to Section 3.2). 
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3.2. Impact of the height difference 
Now the impact of large height differences between the baseline endpoints is analysed. This 
change in the baseline geometry mainly affects the elements in the matrix F as the values of 
the a priori correction models are now needed at different station heights (like e.g., the 
Saastamoinen model ([7]) for the tropospheric delay). Consequently the capability of DD to 
mitigate the common parts of systematic effects is weakened. Therefore, we expect that more 
systematic effects remain in the DD what should be correctly reflected by an increase of the 
coordinates’ interval radii and the size of the zonotopes.  

H∆  [m] Nr [mm] Er [mm] Hr [mm] 
0 0.19 0.17 0.05 

100 0.21 0.16 1.01 
200 0.22 0.16 1.95 
500 0.26 0.15 4.64 
1000 0.33 0.13 8.75 

Table 1: Variation of the coordinate interval radii with height differences 

Table 1 gives an overview of the dependence of the interval-radii for a 5-km baseline oriented 
in an azimuth of 45° on the height difference between the baseline endpoints (first column) 
which is increased up to 1000 m. Mainly the estimated height component is affected, yielding 
a large increase of mm

km8  of the corresponding interval radii. Note that the size of the error 
ellipsoids does not change since the network geometry remains rather stable. Hence, the 
formal standard deviations for all stations are the same as in Section 3.1: 0 28mmN .σ = , 

0 20mmE .σ = , and 0 50mmH .σ = . 

Figure 4: Contribution of basic influence parameters to the coordinate imprecision 
Left:  Azimuth-elevation diagram of the directions of contribution(dashed line: baseline, 
light grey asterisks: zero height differences, black squares: height difference of 100 m) 

Right: Magnitude of the contributions in mm 
 

Due to the particular height difference between the baseline endpoints the directions and the 
magnitudes of the contributions of the influence parameters change. Figure 4 shows the 
directions and magnitudes exemplarily for a 5 km baseline oriented in an azimuth direction of 
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45° and a height difference of 100 m between the baseline endpoints. The light grey asterisks 
indicate the directions for a zero height difference, the black squares the ones for a height 
difference of 100 m. The contributions of the troposphere (11, 13, 14) are now in direction of 
the zenith, affecting mainly the height component. Note that the magnitude and direction of 
the contribution of the pressure (12) do not change. This is due to the fact that the 
corresponding partial derivative of the Saastamoinen model is quasi independent of the 
height. Finally it is obvious that even for small height differences the uncertainty about the 
tropospheric effects dominates the coordinate imprecision, namely the one of the temperature 
(11). The directions and magnitudes of the other considered groups influence parameters 
(orbit, PCO, ionosphere) do not change. 

4. Impact of the stabilisation strategy 

4.1. Motivation 
Now the impact of the regularisation or stabilisation strategy for solving the normal equations 
system for small GPS networks is studied when using DD. In the previous sections, we used a 
straightforward and common strategy: the coordinates of the reference station were held fixed. 
Alternatively, more general constraints can be applied to the coordinates to be estimated like 
in the “free-network” approach. This is especially of interest if the VCM of all coordinates is 
required in further analysis steps like, e.g., for a deformation analysis. 

The normal equation can be stabilised in several ways such as: 

(1) refˆd =x 0    (fixing the coordinates of the reference station), 

(2) ref Cˆd ,=x 0 Σ   (constraining the coordinates of the reference station with, e.g.,  

    2
C = αΣ I ; here α  was kept smaller than 3 mm in order to obtain 

condition numbers ( ) 310Ccond <TA PA +Σ ), 

(3) ˆd =G x 0   (no-net translation condition for all stations or for a subset of  
    stable stations with G representing the nullspace of A). 

The application of one of these strategies artificially creates point positions without 
systematic effects (1, 3) or with neglectable systematic effects (2). In the cases (1) and (2) this 
is the position of the reference station; in case (3) the barycentre of the points in the 
constraints is free of systematic effects. Consequently the coordinate bias patterns [3] and the 
shape and orientation of the zonotopes change depending on the strategy used for the 
stabilisation of the normal equation. 

4.2. Baseline scenario 
Let us consider the simple but very specific case of a single baseline. Table 2 shows the 
variation of the interval radii and formal standard deviation of the coordinates of both baseline 
endpoints. We consider exemplarily a 5 km baseline oriented in an azimuth direction of 45°.  

If strategy (1) is applied, the total amount of imprecision is associated to the second endpoint. 
The very tight constraints which are necessary for the stabilisation (here α = 2 mm) yield very 
similar numerical results. Due to the symmetry of the baseline about its barycentre, strategy 
(3) uniformly redistributes the total amount of imprecision to both endpoints. Note that even 

3rd IAG / 12th FIG Symposium, Baden, May 22-24, 2006



  
 
 
 
if strategy (3) leads to minimum standard deviation, it is not identical with the free-network 
approach and its minimum variance property, since the design matrix has no datum defect. 

Hence, for small baselines (< 5 km) the three strategies do not change the total amount of 
imprecision numerically while the formal standard deviations are changed for strategy (2). 

  

strategy point Nr [mm] Er [mm] Hr [mm] Nσ  [mm] Eσ  [mm] Hσ  [mm] 
A 0.00 0.00 0.00 0.00 0.00 0.00 (1) 
B 0.19 0.17 0.06 0.27 0.20 0.49 
A 0.00 0.00 0.00 1.00 1.00 1.00 (2) 
B 0.19 0.17 0.06 1.04 1.02 1.11 
A 0.09 0.08 0.03 0.14 0.10 0.25 (3)  
B 0.09 0.08 0.03 0.14 0.10 0.25 

Table 2: Variations of the uncertainty measures with respect to the stabilisation strategy. 

4.3. Network scenario 
For networks the situation is more complex than for the case of a simple baseline. However, 
the mechanisms described in section 4.1 are still valid. In order to show the impact of the 
different stabilisation strategies a synthetic network with large height differences is generated. 
The reference station P0 has a height of 500 m. The baseline lengths and height differences to 
the other network stations are given in Table 3.  

baseline length height 
difference 

baseline length height 
difference 

P0 - P1 1077.0 -400 P0 – P7 3026.5 400 
P0 –P2 1187.4 -400 P0 –P8 3067.5 400 
P0 – P3 1469.6 -400 P0 – P9 3187.4 400 
P0 –P4 1999.9 0 P0 –P10 4079.2 800 
P0 –P5 2061.5 0 P0 –P11 4109.7 800 
P0- P6 2236.0 0 P0- P12 4199.9 800 

Table 3: Baseline lengths and height differences in meters 

Figure 5 shows the zonotopes and enclosing interval boxes for four different strategies. If the 
coordinates of the reference station are fixed (Figure 5a), this station is artificially free of 
systematic effects and imprecision. Consequently the systematic effects and the imprecision 
of this station are repartitioned to the other stations. Both increase with the height differences 
with respect to the reference station yielding a height depending pattern for the point 
imprecision, cf. Figure(5a). Since the values of the correction models do not vary linearly 
with the height, different amounts of imprecision of stations in the same height difference 
above (stations P7-P12) or beneath (stations P1-P3) the reference station are obtained.  

Using strategy 3, the barycentre of the network is artificially free of imprecision. 
Subsequently the imprecision increases with the distance to the barycentre cf. Figure 5b. If 
more than one station is used in the constraints (2) the resulting zonotopes are given in Figure 
5c. Figure 5d shows the results when using only P0 and P12 as a subset of stable points in 
condition (3).  
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a) 

 

 

b) 

 
c) 

 

 

d) 

 

 

Figure 5: Variation of the size and the shape of the zonotopes applying different strategies to 
stabilise the normal equation  

These examples underline that coordinate imprecision as well as systematic effects in the 
coordinate domain depend on the “datum definition”. In other words, the patterns of the 
coordinate imprecision change with the strategy used to stabilise the ill-conditioned normal 
equations system when using DD. The individual repartitioning of imprecision is related to 
the distance of each network point to the position that is artificially free of imprecision. 

5. Conclusions  
In this paper the uncertainty about remaining systematic effects (imprecision) is considered as 
a second uncertainty component besides the random variability of the observations 
(stochasticity). Imprecision is described by error bands that are treated by interval methods.  
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It was shown that in case of large height differences in small GPS control networks the 
uncertainty budget is dominated by the imprecision of the height component while for 
horizontal networks the maximum imprecision occurs in the baseline direction. 

The strategy used to stabilise the ill-conditioned normal equation changes the patterns and 
size of the point imprecision measures (zonotopes). All strategies introduce virtual point 
positions that are artificially free of systematic effects and consequently free of imprecision. 
The repartitioning of imprecision depends on the distance of each network point to the virtual 
point that is free of imprecision. These mechanisms should be incorporated in correction 
models for systematic effects in the coordinate domain. 

Further studies will investigate optimal stabilisation strategies, e.g. by minimizing the 
maximum interval radii. Such strategies will lead to a homogeneous repartitioning of the point 
imprecision. 

References: 
 
[1] Alefeld, G. and J. Herzberger: Introduction to Interval Computations, Academic Press, 

New York, 1983. 
[2] Beutler, G., I. Bauersima, W. Gurtner, M. Rothacher, T Schildknecht, and A. Geiger: 

Atmospheric refraction and other important biases in GPS carrier phase observations. 
In: Brunner FK (ed.) Atmospheric effects on geodetic space measurements. 
Monograph12, School of surveying NSW, Sydney, pp 15-44, 1988. 

[3] Brunner, F.K.: On the deformation of GPS networks, Proc XX FIG Congress, 
Melbourne, March, pp T501.4 1- T501.4 8, 1994. 

[4] Jaulin, L., M. Kieffer, O. Didrit, and E. Walter: Applied Interval Analysis, Springer, 
London, 2001. 

[5] Kutterer, H.: Uncertainty assessment in geodetic data analysis, In: Carosio, A. and H. 
Kutterer (Eds.) First Int. Symp. On Robust Statistics and Fuzzy Techniques in Geodesy 
and GIS. Institut für Geodäsie und Photogrammetrie Bericht 295, ETH Zurich, pp 7-12, 
2001. 

[6] Lachapelle, G. and P. Alves: Multiple Reference Station Approach: Overview and 
Current Research. Journal of Global Positioning Systems 1(2): 13-136, 2002. 

[7] Saastamoinen, J.: Contribution to the theory of atmospheric refraction. Part II refraction 
corrections in satellite geodesy. Bulletin Géodésique 107:13-34, 1973. 

[8] Santerre, R.: Impact of GPS satellite sky distribution. manuscripta geodaetica 16:28-53, 
1991. 

[9]  Schön, S.: Analyse und Optimierung geodätischer Messanordnungen unter besonderer 
Berücksichtigung des Intervallansatzes. Dissertation, Deutsche Geodätische 
Kommission C 567. München, 2003. 

[10]  Schön, S. and H. Kutterer: Imprecision in Geodetic Observations – Case Study GPS 
Monitoring Network. In: Stiros, S. and S. Pytharouli (Eds.) Proc 11th: FIG Int. Symp. on 
Deformation Measurements. Geodesy and Geodetic Applications Lab., Patras 
University. Publication No.2: 471-478, 2003. 

[11] Schön, S. and H. Kutterer: Realistic uncertainty measures for GPS observations. In: 
Sanso, F. (Ed.): A Window on the Future of Geodesy. Springer Berlin, pp 54-59, 2005. 

[12] Schön, S. and H. Kutterer: Using Zonotopes for Overestimation-Free Interval Least-
Squares - Some Geodetic Applications. Reliable Computing, 11(2):137-155, 2005. 

[13] Schön, S. and H. Kutterer: Uncertainty in GPS networks due to remaining systematic 
errors – the interval approach. Journal of Geodesy (in press).  

3rd IAG / 12th FIG Symposium, Baden, May 22-24, 2006


