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Abstract: A detailed algorithm for GPS baseline processing using phase observations is 
presented in this paper. The algorithm was the basis to elaborate a new software which was 
created mainly for research purposes, especially for testing different numerical methods on each 
stage of the GPS baseline determination. The baselines analysed according to the described 
algorithm are expected to form a data file, which may by utilized in engineering surveys.

1. Introduction 

The automated, monitoring deformation systems necessitate implementation of real time mode 
baseline processing algorithm. This algorithm must ensure fast calculations and oportunity of 
instant   detecting the changes of point  position.  Sequential  adjustment algorithm has these 
features. The way of using the sequential adjustment algorithm to baseline processing in real 
time mode is described below.

2. Observation equations 

In proposed algorithm two types of observation are used: the pseudoranges and carrier phases. 
We can show the observation equations for both types of observations as follow[1],[2],[3],[4]:

Φ= c
f ρ+f(dts-dtr)+ c

f δtrop- c
f δjon+N+εΦ (1)

P=ρ+c(dts-dtr)+δtrop+δjon+εp

where:

Φ - measured carrier phase

f   - carrier frequency

ρ  - geometric range receiver-satellite

c  - vacuum speed of light

dts - offset of satellite clock 

dtr - offset of receiver clock

δtrop, δjon -delays due to the troposphere and ionosphere

εΦ, εp - the effect of measurement noise for carrier phases and pseudoranges 
respectively

In proposed algorithm double differenced carrier phase observations are used:
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It  is  assumed  that  the  clock  offsets  and  the  effect  of  ionosphere  are  removed  by  double 
differencing the observations.

3. Ambiguity resolution

To resolve ambiguities both types of observation: pseudoranges and carrier phases are used.

Therefor a preliminary adjustment is performed. In this adjustment following functional model 
is used:

V=AX+L , (3)

where:

V - corrections vector
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Statistical model can be written as:

C=δ2Q (4)

where:

C - covariance matrix
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 (n - number of observations,  m- number of parameters
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Q Qp, QDD -cofactor matrices for pseudoranges and double 

    differenced carrier phases respectively

Hence the solution of least squares estimation is the following vector:

X=(ATC-1A) -1ATC-1L (5)

and his variance matrix:

CX= 2 (ATC-1A) -1 (6)

Matrix CX has following structure:
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C , Cc, Ca - covariance matrices of coordinates and ambiguites respectively.

Algorithm of preliminary adjustment can be shown as follow:

1. Acquisition of observation data (pseudorange and phases) from the first epoch

2. Adjustment

3. Testing the following condition:

maximum(diag(Ca))< δ2
 max (7)

where δ2
 max is constant 

4. If condition (7) returns false then number of observations is increased by adding observation 
set from next epoch in next adjustment.

5. When condition (7) returns true the preliminary adjustment is finished. Integer ambiguities 
are calculeted from last step using vector Xa  and Ca  matrix with LAMBDA method [5]. 

6. Finally adjustment of the double differenced carrier phases with fixed, integer ambiguites is 
performed.  The  functional  model  of  this  adjustment  can  be  presented  by  means  of  the 
following system of the correction equations:

VDD=ADDcXc+LDDc (8)

where:

LDDc= LDD+ADDaXafix

ADDc, ADDa - submatrices of ADD refering to coordinates and ambiguites respectively

Xafix - vector of fixed, integer ambiguites

4. Sequential adjustment

Functional model for the sequential adjustment reads as follow:

Vs=AsXc+Ls (9)

where:

Vs - residuals vector
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A E is 3x3 dimension unit matrix
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L 0 is 3x1 dimension vector of zeros

Statistical model can be presented in the form of following covariance matrix:

Cs =δ2Qs (10)
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where:
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Q , Qc - cofactor matrix for coordinates                                    

If preliminary adjustment observations set consists of observations taken from n epochs, 
then sequential adjustment starts with n+1 epoch (the n+1 epoch of baseline processing is the 
first  epoch  of  sequential  adjustment).  In  each  successive  epoch  separate  adjustment  is 
performed. The matrix  As and the vector  Ls are formed on the basis of coordinates obtained 
from  previous  adjustment  and  carrier  phases  from  present  epoch.   In  the  first  epoch  of 
sequential adjustment elements of matrix ADDc and vector LDDc are determined on the basis of 
coordinates taken from preliminary adjustment and fixed ambiguities. Before matrix  As and 
vector Ls are formed, cycle slips must be detected. Solution of this problem is e based on triple 
differenced carrier  phases  analysis.  Triple  differences  are  formed as  differences  of  double 
differenced carrier  phases from last  three successive epochs.  This values  (for  each pair  of 
satellites) are stored and updated in two-elements vectors.  It is assumed that cycle slip appears 
if  rounded difference of  that  two elements  differs  from zero.  If  cycle  slip  is  detected the 
appropriate value of ambiguity is changed.

5. Results of the test

The algorithm was applied to raw GPS data. The results of preliminary adjustments are 
given in Fig. 1. Mean errors of ambiguities were calculated as square roots of diagonal elements 
Ca from formula (6). In the test it took 36 epochs (with interval=20 sec.) of observations before 
the mean errors of ambiguities were lower than δ max=1.5. 

Fig. 1 Mean errors of ambiguities

In Fig. 2 differences of parameter values in succesive epochs and their mean errors are schown.
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Fig. 2 Differences of parameter values in successive epochs and their mean errors

After about six epochs from start of sequential adjustment coordinates stopped varying.

6. Final remarks

Algorithm described in this paper offers the possibility of detecting instant change in point 
position. It is proper for deformation measurements purposes. 
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