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Abstract: Geodetic deformation monitoring networks has to be sufficient in terms of 
precision, reliability and strength, sensitivity and cost. Hence, before monumenting and 
gathering survey data, a geodetic network must be designated to meet some quality criteria. 
Mathematically, optimal design of a geodetic network implies minimizing or maximizing an 
cost function that denotes the quality of the network. Classically, a network can be optimized 
using the trial and error method or analytical methods such as linear programming, quadratic 
programming, or some optimization problems can be solved by generalized or iterative 
generalized inverses. Optimization problems may also be solved by intelligent optimization 
techniques such as genetic algorithms, simulated annealing and particle swarm optimization 
algorithm (PSO). In this paper, we dealt with optimization problem of geodetic networks. A 
GPS network was optimized by using PSO algorithm in the sense that it will satisfy good 
precision and low cost requirements. According to our results, PSO algorithm can be used as 
a tool for optimizing a geodetic network.  

1. INTRODUCTION  

Optimization implies minimizing or maximizing an objective function which expresses the 
criteria adopted to define the quality of the network. Generally, the quality of a geodetic 
network have been characterized by its precision, reliability and strength, and economy. But, 
one more criterion are added to these criteria for deformation monitoring networks, that is 
sensitivity criterion. Precision is a measure of the network’s characteristic in propagating 
random errors. The main purposes of the present contribution is to design and optimize of a 
GPS network in the sense of high precision and low possible cost. Grafarend (1974) classifies 
different optimization problems into different orders, that is: 

a) zero-order design (ZOD): optimum datum definition 

b) first-order design (FOD): design of the optimum network configuration 

c) second-order design (SOD): selection of the optimum observational weights 

d) third-order design (THOD): improving an existing network by adding extra points 
and/or observations 
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Sometimes the FOD and the SOD design problems can be solved simultaneously. In this case, 
the design problem is called a combined (COMD) problem (Kuang, 1996). 

Traditionally, geodetic network optimization problems can be solved using either trial and 
error method or analytical methods. Unfortunately, these classic approaches can give rise to 
some problematic cases. For example, when the trial and error method are used, optimal 
network may never be found and a great quantity of computation may be required. Similarly, 
analytical methods may produce absurd solutions such as negative weights or disconnected 
networks. Furthermore, the planned network may never be achieved (Kuang, 1996). On the 
other hand, local optimization techniques such as Kuang’s methodology in the geodetic 
literature can be converged to any local optimum instead of global optimum. Can the optimal 
design problems of geodetic networks be solved using a more simple and efficient method?     

The main purposes of the present paper is to realize of second-order design of a GPS network 
that can be used for deformation monitoring in the sense of desired precision and low possible 
cost using PSO method. That will provide an optimum survey planning and prevent 
unnecessary observations.     

2. OPTIMAL DESIGN OF GEODETIC NETWORKS 

In the literature of geodetic network optimal design, optimization means minimizing or 
maximizing of an objective function that represent the goodness of the network. The goodness 
of a geodetic network can be measured by precision, reliability and strength, and cost. 
Different objective functions reflecting these criteria can be used in the optimization 
procedure. Only precision and cost criteria are considered in this paper. Criterion matrices are 
very adequate tools to set up objective function. They represent a desired precision for the 
network results. If a criterion matrix is used in the optimization procedure the following 
objective function can be employed: 

 

 .minCC sx →−  (1) 

 

In all of the optimization problems, the main task is to find optimization variables by 
minimizing or maximizing the chosen objective function. Furthermore, the values of 
optimization variables can be restricted according to some specific constraints. Now, we will 
discuss these two important concepts of optimization procedure the second-order design of 
geodetic networks point of view, namely, optimization variables and constraints. 

In the SOD, the P matrix of observation weights is the optimization variables. On the other 
hand, the A matrix represents the geometry of the network. If both matrices are known, the 
covariance matrix for the unknowns in the adjustment problem is given by 

 ( ) 1T2
0x PAAC

−= σ  (2) 

 

As is well known, covariance matrix of the unknown parameters contains complete 
information about the precision of a geodetic network. 
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The weights of observations should be non-negative and be bounded by the maximum 
achievable accuracy of the available instrument(s), i.e., 
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where 2
0σ  is the a priori variance factor and ( )min

2
iσ  are the minimum variances that can be 

achieved for each observation (Kuang, 1996).    

As mentioned above, classic methods that appeared in the literature may cause some 
problematic cases. Recently, many optimization problems have been solved by using 
techniques of artificial intelligence. These techniques are also named natural optimization 
methods. Examples of natural optimization techniques are simulated annealing (Kirkpatrick et 
al., 1983), genetic algorithms (Haupt and Haupt, 2004)  and PSO (Parsopoulos and Vrahatis, 
2002). These techniques emulate optimization processes encountered in the nature. For 
example, PSO mimics collective behavior of some creatures such as birds and bees. In the 
next section we will discuss the PSO method.      

3. PARTICLE SWARM OPTIMIZATION  

PSO, which is an iterative-heuristic, population-based search algorithm, is proposed by R.C. 
Eberhart and J. Kennedy in 1995. It emulates collective intelligence of bird flocking, fish 
schooling and bee swarming to converge to the global optimum. In the frame of PSO, a 
swarm consists of interacting agents that is particles. The characteristics of the particles 
depend on the problem of interest. Collaboration among the particles provides global 
optimum to the problem. These particles move in an D-dimensional search space, in an 
attempt to discover ever-better solutions.  

Each particle of the swarm has a current position vector and an adaptable velocity vector. 
Position vector contains optimization variables. For example, in this study optimization 
variables are observation weights. Furthermore, each of the particles has a memory. During 
the iterative procedure, they remember both the best position found so far by each particle of 
the swarm and the best position found so far by all the particles. At each iteration step, 
particles are shifted from their current position by applying a velocity vector to them. As it is 
clear, the velocity of each particle have been updated at each iteration of the algorithm.  

The manipulation of the swarm have been implemented according to following two equations: 

    
 ( ) ( )( )igiiii xprcxprcwvCv −+−+=+ 22111  (4) 
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Here, the position of the ith particle is represented as ( )iDiii xxxx ,...,, 21= , and  the velocity 

for ith particle is represented as ( )iDiii vvvv ,...,, 21= , the best previous position of the ith 

particle is represented as ( )iDiii pppp ,..., 21= , gp  is the best solution achieved so far by the 

whole swarm. In Equation 4, there are some parameters that must be explained. 1r  and 2r  are 
random numbers, uniformly distributed in [0,1]. They are used to add a stochastic element to 
the movement of the particles. Constants 1c  and 2c  determine the balance between the 

influence of each particle’s knowledge )( 1c  and that of the whole swarm )( 2c . These 
constants are called cognitive parameter and social parameter, respectively. C  is constriction 
factor, which is used to limit velocities. The velocity of the previous iteration is kept weighted 
with w , i.e., the inertia weight. The inertia weight and constriction factor prevent the 
algorithm to converge on premature solutions.  

Finally, the basic strategy for the implementation of the PSO algorithm is given as follows: 

1. Initialization 
 
            j=0 

(a) Determine the objective function, optimization variables and constraints  
(b) Select PSO parameters such as inertia weight, constriction factor and social 

and cognitive parameters 
(c)  Select neighborhood topology     
(d) Randomly generate initial particle positions 0

ix  in D-dimensional search space 

(e) Set initial particle velocities to zero; 00 =iv  

(f) Set j=1 
 

2. Optimize 
 

(a) Evaluate objective function value jif  using particle positions jix    

(b) If best
i

j
i ff ≤  then j

i
best

i ff =  and j
ii xp =  

best
if  is the particle’s personal best cost 

(c) If best
global

j
i ff ≤  then j

i
best

global ff =  and j
ig xp =  

best
globalf  is the best cost of whole swarm 

(d) If stopping criterion is satisfied then go to 3 
(e) Update all particle velocities jiv  by Eq. (1) 

(f) Update all particle positions jix   by Eq. (2) 

(g) Increase j 
(h) Go to 2(a) 
 

Stop 

For more detailed information on PSO, interested readers refer to Kennedy and Eberhart 
(2001), Clerc and Kennedy (2002), Eberhart and Shi (2000) and Parsopoulos and Vrahatis 
(2002) 
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4. NUMERICAL EXAMPLE  

The second-order design of GPS networks using classic operation research methods was 
investigated in Kuang (1996). To demonstrate the applicability of PSO to the SOD of a GPS 
network an example is provided below. If a set of points whose relative coordinates to be 
estimated by GPS relative positioning technique, a list of possible baselines that can be 
measured in the field and the precision criteria for the estimated coordinates are given, PSO 
searches for the optimal set of observational weights and their corresponding observational 
precisions.  

Figure 1 depicts a GPS network consisting of 4 points and 6 baselines. This network can be 
used for deformation monitoring. The desired precision can be described by a criterion 
matrix. In our example, we used the following criterion matrices: 

 

 { }( )222
s 1...1C mmdiag=  (6) 

 1 
2 

4 
3  

Figure 1- GPS Network 

Let us perform a SOD following the objective function expressed in Equation 1. PSO was 
used as a solution strategy. Chosen parameters for PSO are listed in Table 1.  

The maximum and minimum weights are define the search space, i.e., particle position are 
restricted with minimum and maximum weights. Maximum weights are calculated using the 
precision of available instruments. The minimum and maximum weights are shown in the 
columns 3 and 4 of Table 2, respectively.  

 

 

 

 

 

 

 

 

Table 1- PSO parameters 

Parameter Value 

Particles 30 

Iteration 100 

1c  and 2c  2.05 

w  decreasing from 1 to 0 during the iterative process  

C  0.729 
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The obtained optimization results using PSO method are summarized in Table 2, Table 3 and 
Table 4. 

 

From To P(min) P(max) P(opt.) 

1 2 0 1 0.7423 

1 3 0 0.5 0.4549 

1 4 0 1 0.7126 

2 3 0 1 0.3948 

2 4 0 0.5 0.0000 

3 4 0 1 0.4816 

Table 2- Optimization Results 

As can be seen from Table 2, the optimal weight for the baseline of 2-4 baseline is zero. 
Accordingly, this baseline are eliminated from final observing plan. If the baseline of 2-3 is 
eliminated due to its optimal weight is insignificant compared to other baselines, final results 
for the network are obtained as given in Table 3. The optimal weights of the rest baselines are 
replaced by maximum weights given in the column 4 in Table 2, because maximum weights 
are calculated with respect to the precision of available instruments. In Table 3, the variances 
of the coordinates have been shown. Since the correlations among all GPS baseline 
components are neglected, the standard deviations of the coordinates are the same for any 
point. According to these results, our criteria given in Equation 6 are satisfied for all points.   

 

Point 2
xσ  2

yσ  2
zσ  

2 1 1 1 

3 1 1 1 

4 0.75 0.75 0.75 

Table 3- The variances of the coordinates after optimization 

5. CONCLUSION 

An optimal network in the sense of desired precision and low possible cost can be achieved 
with the PSO algorithm. The main goal of the present contribution was to solve SOD problem 
in a GPS network in order to find optimum observations accuracy. Having applied the PSO 
algorithm to the problem, the observations that is obtained with zero weight are removed from 
the observing plan.  

It should be noted that the application of the PSO algorithm to the geodetic optimization 
problems are very preliminary. For example, different optimization problems such as the FOD 
of a geodetic network can be solved using this technique, or sensitivity criterion can be dealt 
with for deformation monitoring networks. On the other hand, some studies about the 
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characteristics of the PSO algorithm may be investigated, to illustrate the proper selection of 
PSO parameters can be searched. Furthermore, since the PSO is a stochastic method, 
initializing the algorithm and producing random elements of the algorithm can be examined in 
detail.       
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