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Abstract: Kalman filter is used to process the real-time deformation series, but it requires 
white noise. Because the GPS observations with high sampling rate are correlated, the kalman 
filter with shaping filter is applied. In order to monitor and control the quality of the GPS 
observation series, a new method of simultaneously detecting deformations and outliers is put 
forward. The deformation and outlier have some similarity but also some differences so that 
they can be detected and distinguished simultaneously. This new method is applied in a GPS 
experiment and the feasibility of this method is certified. 
 

1.  INTRODUCTION 

Landslide hazard is one of the major natural hazards. In order to reduce any human losses and 
the economic damages it is necessary to develop an early warning system of landslides. It is a 
challenging and complex topic to develop an early warning system of landslides because the 
landslide hazard is caused by mutual interaction of various factors. To develop the 
deformation monitoring and analysis model is one of the most significant parts, providing an 
important basis for identifying a landslide. GPS is a useful tool to obtain real-time 
observations of landslides. The main task of the GPS real-time series analysis is to separate 
the measurement deviations from the observations and to detect the point deformation epochs 
with less time delay. 

As we know, Kalman filter is a key tool to process the real-time deformation series, but it 
requires white noise. Kuhlmann (2003) has obtained some results that the GPS observations 
with high sampling rate are correlated, the kalman filter with shaping filter is applied in the 
GPS time series. Shaping filter can be used for eliminating the colored noise. The shaping 
filter describes the long term movement of correlating measurement deviations. More 
accurate results can be obtained after the data is processed by the kalman filter model with 
shaping filter. In order to monitor and control the quality of the GPS observation series, we 
propose a new method that can detect deformations and outliers simultaneously in this paper. 
The deformation and outlier have some similarity but also some differences so that they can 
be detected and distinguished simultaneously. It is discussed in detail how to determine the 
state vector when outlier and deformation occur. In order to verify the new method, we have 
carried out a GPS experiment. 



  
 

 2 

2.  DESCRIPTION OF THE GPS EXPERIMENT   

The GPS experiment was carried out on the roof of the Institute of Geodesy and 
Geoinformation and the Max-Planck Institute in Bonn, Germany. The baseline was about 
1.2 km. The GPS equipment consisted of a Trimble 5700 receiver and Zephyr antennas. A 
cut-off angle of 10° was chosen and the sampling rate t∆   was 1 second. During the GPS 
kinematic measurements, the height of the rover station which was on the roof of the Institute 
of Geodesy and Geoinformation was changed with a crank every 30 minutes in steps of 
12.5mm. The kinematic measurement lasted for 6 hours (see Figure 1). The same baseline 
was observed for 17 hours with both fixed antennas (see Figure 2). The same sampling rate 
and the same cut-off angle was chosen. The static observations are used for the estimation of 
the parameters of the stochastic model. Additionally the developed method can be checked 
because here no deformation should be detected.  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
-50

0

50

100

150

200

[Hour]

[m
m

]

 
         Figure 1 -  Kinematic height observation 
                          time series 
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               Figure 2 - Static height observation  
                                 time series  

3. DETERMINATION OF THE AUTOCORRELATION FUNCTION FO R 
CORRELATING ERRORS 

As we know, because of the multipath effect and some other error sources, the GPS 
measurements with high sampling rate are influenced in a similiar way, resulting in 
autocorrelation. So GPS measurements contain colored noise. Firstly the autocorrelation 
function (Strang and Borre, 1997) is introduced. 

3.1. Description of the Autocorrelation Function  

The observation series is described as (a1, a2, a3,…,ai,…an ) , which are made at equidistant 
time intervals t∆ . n is the total number of the observations. Firstly, we compute the mean 

value mof all observations; secondly, we compute the autocorrelation coefficient ̂ ( )C k of the 
observation series according to the definition below. 

                
1

ˆ (0) ( )( ) /( 1)
n

i iC a m a m n= − − −∑ ;                                                  (1) 

1
2

ˆ (1) ( )( ) /( 2)
n

i iC a m a m n−= − − −∑ ;                                                (2)    
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C k a m a m n k−
+

= − − −∑ ;                                              (3) 

The normalized autocorrelation coefficient kR  is defined by the following formula, 

ˆ ( )
ˆ (0)

k

C k
R

C
=                                                                        (4) 

Where k is the normalized autocorrelation coefficient’s index, the time lag betweenia and i ka −  

isk t⋅∆ . The distribution of the autocorrelation coefficient of the GPS static observations is 
obtained by the formulas (1)-(4). The autocorrelation function of the GPS static height 
observations (see Figure 2) is described as follows. 
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Figure 3 -  Autocorrelation coefficient of all the GPS 

static height observations 
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             Figure 4 -  Autocorrelation coefficient of         
              first 600 GPS static height observations 

 
In order to get a better understanding of the autocorrelation function, the autocorrelation 
coefficients of all the GPS static observations (see Figure 3) were zoomed to the 
autocorrelation coefficients of  the first 600 GPS height observations (see Figure 4). 

From Figure 4, we can see that the GPS measurement deviations are composed of white noise 
and colored noise. The colored noise follows the exponential distribution. When the time lag 
k t⋅∆  is larger, for example 400 seconds, the autocorrelation of the observations is not so 
obvious. But when the time lag is smaller, for example 1 second, the autocorrelation 
coefficient between these two observations is becoming larger.  

3.2. Stochastic Model’s Determination 

The GPS measurements deviations can be divided into correlating errors∆  and non-
correlating errors δ (Schwieger, 1999). The correlating errors and non-correlating errors is 
seperately being described by the standard deviations σ ∆ and δσ . As mentioned above, 

correlating deviations follow a Gauß-Markov-process with correlation function ( )R e α ττ −= . 
According to the estimation of the stochastic model (Kuhlmann, 2003), we can get the 
results, 4.5545mmδσ = , 5.7241mmσ ∆ = and 0.0063α = .  
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4. KALMAN FILTER WITH SHAPING FILTER  

The Kalman Filter, first derived by Kalman (1960) for use in electrical control systems, is a 
widely used method for deformation analysis nowadays. The kalman filter model (Welch and 
Bishop, 2006) can be described as follows, 

The system equation is described by 

, 1 1k k k k kx x w− −= Φ +                                                              (5) 

where kx , 1kx −  are the state vectors at different epochs; , 1k k−Φ  is the system transition Matrix; 

kω  is the  system noise. 
The measurement equation is given by: 

k k k kl H x ε= +                                                                     (6) 

where kl  is the measurement vector at epoch k; kH  is the observation transition matrix;  kε  is 
the measurement noise. 

There are two groups in the implementation of the kalman filter: time update equations and 
measurement update equations (Welch and Bishop, 2006). 

The time update equations are  
                                                      , 1 1ˆk k k kx x− −= Φ                                                                     (7)                            

1ˆ, 1 , 1k k

T
x k k x k k kP P Q

−− −= Φ Φ +
                                                   (8)

 

where kx  is the predicted value of the state vector and 1ˆkx −  is the optimal estimator of the 

state parameters at the previous epoch 1k − ; 
kxP is the covariance of kx and 

1ˆkxP
−

 is the 

covariance of 1ˆkx − ; kQ  is the variance of the system noisekw . 

The measurement update equations are 
                                                     1( )

k k

T T
k x k k x kG P H H P H R −= +                                                (9) 

                                                      k k k kd l H x= −                                                                    (10) 

1ˆk k k kx x G d−= +                                                                  (11) 

k k

T
d k x kQ H P H R= +                                                              (12) 

ˆ ( )
k kx k k xP I G H P= −                                                             (13)                

where kG  is the gain matrix; R is the covariance of the observation noise; kd is the innovation 

and 
kdQ is the covariance of kd . 

In this GPS experiment there are no forces at the input and the deformation changed very 
slowly, so the kalman filter model can be described as the identity model. Because of the 
colored noise in GPS measurements, a shaping filter is used. The state vector is augmented by 
another variable 2x  that is used to describe the long term movement of correlating 

measurement deviations. 

The new state vector is 

                                                      1

2

( )

( )k

x k
x

x k

 
=  
 
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with the state vector of the height change at epoch k 1( )x k  and the movement of the 

correlation measurement deviations 2( )x k . 

The new system equation and the new measurement equation are obtained as follows. 

                                      1 1 1

2 2 2

1 0 1 0( ) ( 1) ( )

( ) ( 1) ( )0 0t t

x k x k w k

x k x k w ke eα α− ∆ − ∆

−        
= +        −        

                     (14)                         

  [ ] 1

2

( )
( ) 1 1 ( )

( )

x k
l k k

x k
ε 

= + 
 

                                                    (15) 

5. ALGORITHM OF DETECTING DEFORMATIONS AND OUTLIERS  

5.1. Idea of the Algorithm 

This research aims at developing algorithms which can detect the deformation and the outlier 
with short time delay. 

If there are no changes in the time series, for example no deformation or no outlier in the GPS 
measurements, the filtered results should, from a statistical point of view, follow the normal 
distribution with mean µ and variance σ². The variance σ² is obtained from the static height 
observations time series by the formula 

  2 2
1

1

1
( )

1

n

f
i

x u
n

σ
=

= −
− ∑                                                        (16) 

where 1 fx  denotes the filtered result of the static observations time series; u is the mean value 

of the filtered results in the time series and n is the number of the chosen static observations.  

Usually the time series contains deformations or outliers. Therefore, a test factor          

                                                    
1 0fx x

T
σ
−

=                                                                        (17) 

is used to detect these changes. Here1 fx  is the filtered result of the time series and 0x is the 

initial value of the state vector x1 which can be computed from the former measurements.  It is 
known that T doesn’t follow the normal distribution when the deformation or outlier occurs in 
the time series. With a given significance levelα , we can get the boundary Pα  of T from the 

normal table. By the hypothesis testing, it is possible to detect values which do not follow the 
normal distribution. That means the abrupt changes (deformation or outlier epoch) can be 
detected, but it is impossible to distinguish outliers from deformations by T. 

The difference between the deformation and the outlier is that the outlier occurs isolated, that 
means the test should be accepted at the following epochs. The test factor T will change 
suddenly and then still follow the normal distribution for the next following epochs.  

The situation is different when a deformation occurs. If there is a deformation, the 
observations at this epoch and the next following epochs are all changed and as a 
consequence the test factor T will not follow the normal distribution at the following epochs 
until 0x  is changed to the new initial value.  
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To make use of the described behavior another factor J is used. J is the number of continuous 
rejected tests. If J is smaller than a chosen boundary M it means that an outlier occurs. If J is 
larger than the boundary a deformation is found.  

So the test factors T and J are two factors to distinguish outliers and deformations. The test 
factors T and J should detect the deformation as soon as possible, with short time delay and 
less false alarms (when a deformation is detected, the system will give an alarm). So a 
suitable decision for the factors is important.  

Yes 

End 

No 
i=N 

Outlier detected Deformation detected 

Robust Model 
Processing 

J=J+1 

i=i-J; setting new initial value 
 

J=0 J=0 

|T| >Pα ; J=M |T| >Pα ; J <M |T| <Pα ; 1<J <M 

     Test factors: T=|x1f-x0|/σ ;   J: the time span of T when |T|>Pα  

Initial value x0 

i=i+1 

Prediction and its covariance 

Innovation 

Gain matrix 

Shaping Filtered results x1f 

Observation
s 

Figure 5 -   Flowchart of the test procedure for the modified kalman filter 
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Y Y 
Y 

The flowchart of this algorithm is described in Figure 5. The proposed procedure is applicable 
to any dynamic system. 

In this example the significance level α is selected as 5%, the boundary of J is selected as 
M  = 3 epochs, σ  is 2.5 mm obtained from the static height series. Of course according to 
different significance levels, M is selected as different numbers.  

5.2. Modification of the filtered Results when the Outlier is detected  

The filtered results will be deteriorated by the outlier. Therefore, after the detection of the 
outlier we should reduce the outlier’s influence on the filtered results. The gain matrix must 
be modified, because the outlier affects the filtered results by the gain matrix. In this paper, 
the method accepted is based on the idea of the equivalent weights function (Y.Yang, 2002). 
If an outlier occurs the modified kalman gain matrix kG  is construted as follows: 

                        

0

0 1
, 0 1

1 0

1

1 | |

| |

| |

0 | |

k

k
i j k

k

k

S k

k k S
k S k

S k k

S k

γ

<


 −= < <  − 
 >

                                                      (18) 

,k k i jG G γ= ⋅                                                                                                  (19) 

where 0k and 1k  are two constants, usually chosen as 2.0-3.0 and 4.5-8.5 respectively;      
1
2| |

kk k dS d Q
−

= .        

5.3. Determination of the initial Value at the Epoch when the Deformation is detected   

As we know, if the deformation is detected, the initial state value1x  is changed to a new value 

which should be equal to the new deformation result1 ( )newx k . There are 4 different methods to 
determine the new deformation value as the new initial mean value. 

5.3.1. 1st method  

According to the idea of the equivalent weight function, we can change the weight of the 
observations. When deformation occurs, the observations play a main role. Hence, the weight 
of the observations should be increased. Because the gain matrix can be considered as the 
weight of the observations, the gain matrix of 1( )x k  is modified as follows: 

1 1
1 1

ˆ ( ) initial
k k

x k x
G G

σ
− = ⋅ 

 
                                                          (20) 

where 1initialx  is the initial value of 1( )x k . 

The new state vector knewx can be obtained as  

1 1
1 1 1

2

ˆ ( )
( ) ( )

( )
0

initial
knew k k

knew
knew

x k x
x k x k G d

x
x k

σ
 −  + ⋅ ⋅    = =         

. 

5.3.2. 2nd method  

If a deformation occurs at epoch k, the system equation does not describe the transformation 
between two neighbouring state vectors correctly. But the state vector’s value at epoch k can 
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be obtained from the measurement equation. As we know, the shaping filter is correlated and 
follows the exponential function; we can get the predicted shaping filter’s value at epoch k 

2( )x k . That is 2 2( ) e ( 1)tx k x kα−= − . 

From the measurement equation, 

                       [ ] 1
1 2

2

( )
( ) 1 1 ( ) ( ) ( ) ( )

( )

x k
l k k x k x k k

x k
ε ε 

= + = + + 
 

              

we can get the state vector’s approximate value at epoch k, 
                   2 2ˆ( ) e ( 1)t

newx k x kα−= −                                                                            (21) 

                      1 2( ) ( ) ( )new newx k l k x k= −                                                                   (22) 

The new state vector knewx can be obtained as  

                            1 2

2 2

ˆ( ) ( ) e ( 1)

( ) ˆe ( 1)

t
knew

knew t
knew

x k l k x k
x

x k x k

α

α

−

−

 − − 
= =    −    

. 

5.3.3. 3rd method  

Because the shaping filter 2( )x k  follows the exponential distribute,2( )x k  can be 

obtained 2 2ˆ( ) e ( 1)tx k x kα−= − . Furthermore, the new state vector1 ( )newx k can be obtained by 

                                                  1 1ˆ( ) ( 1)newx k x k velocity= − +  

The velocity was determined by the observation equations, 

1 1

2 2

2 2

( ) ( 1)

( ) ( ) ( ) ( 1) ( 1) ( 1)

ˆ ˆ( ) e ( 1) ( ) ( 1) ( 1) ( 1)t

velocity x k x k

l k x k k l k x k k

l k x k k l k x k kα

ε ε
ε ε−

= − −
= − − − − − − − −

= − − − − − − − − −

M

M

                          (23) 

The new state vector knewx at this epoch k can be described as follows, 

                              
11

2 2

ˆ ( 1)( )

( ) ˆe ( 1)
knew

knew t
knew

x k velocityx k
x

x k x kα−

− +  
= =    −   

 . 

5.3.4. 4th method  

1 ( )newx k  can still be determined by the formula1 1ˆ( ) ( 1)newx k x k velocity= − + , but the method to 
determine the velocity is different from the 3rd method. The velocity is determined by the 
movement velocity observed by tacheometer. In this study, the observed velocity is equal to 
1.5 times the difference between the filtered result 1ˆ ( )x k  and 1ˆ ( 1)x k − . That is  

1 1ˆ ˆ1.5 ( ( ) ( 1))velocity x k x k= ⋅ − −                                                     (24) 

Thus, the state vector at the epoch k can be determined, 

                            1 1 1 1

2

( ) ( 1) 1.5 ( ( ) ( 1))

( ) 0
knew

knew
knew

x k x k x k x k
x

x k

− + ⋅ − −   
= =   

  
. 
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6. RESULTS ANALYSIS 

6.1. Standard Deviation  

The standard deviation of a random variable x is defined as: 

                                                       
1n

σ
∆∆

=
−

∑                                                                   (25) 

where∆  is the error, i.e. the difference between the filtered results and the mean value;           
1n−  is the number of degrees of freedom. 

After the static data series was processed by the kalman filter model with a shaping filter, the 
standard deviation σ was obtained as 2.5mm according to the equation (25). 

6.2. Deformation Epochs detected  

The method to detect the deformation epoch was applied to the static data series and the 
kinematic data series in order to check whether it works.  

6.2.1. Static data processing results 

 

 

 

 

 

Table1 -  static data processing results from 4 different methods 

As mentioned above, there are 4 different methods to process the time series, so 4 different 
method results are obtained. As we know, the data series processed was static data series; 
there should be no deformation epochs detected. 

But from the results above, epoch 25339 was detected in every method results. Therefore, it 
should be paid more attention to this epoch. It was discovered that at epoch 25339 the satellite 
geometry became poor. Geometric Dilution of Precision (GDOP) was about 20. That is why 
the result at this epoch is not accurate and this epoch is taken as the deformation epoch. 

Compared to the standard deviations, the results obtained from the fourth method are better 
than the results from the other methods.  
 
6.2.2. Kinematic data processing results 

For the kinematic data series, the height was changed by the crank every 30 minutes. The 
deformation epochs were known. J=3 is the best chosen number compared to the other 
numbers and σ  is computed as 2.5mm. 

 
Detected Epochs 
(Height changed ) 

Standard 
Deviation (mm) 

1st method 25339 25413 2.67 
2nd method 25339  2.68 
3rd method 25339  2.72 
4th method 25339 25408 2.53 
True epoch No deformation epoch  
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Table 2 -  Kinematic data processing results from 4 different methods 

For the kinematic data series, it is more important to determine the new deformation value. 
Because the new deformation value will be set as the new initial value in order to detect the 
next deformation epoch. We can compare the results from 4 different methods in order to 
obtain more accurate epochs with short time delay. Table 2 shows the epochs detected by 4 
different methods.  

In this experiment, the height was changed every half an hour. The epoch should be detected 
at epochs1800, 3600, 5400,…, 21600, which are described in the first column of the table 2. 
In fact, the epochs are detected with different time delay by different methods. The principle 
to get more accurate epochs is to choose the earliest epoch among the 4 different detected 
results. For example, at the epoch 3600, the height was changed, but from the results, the 
detected results with different time delay were 3633, 3601, 3604 and 3604. We chose the 
earliest epoch 3601 with the least time delay as the best result. The last column of the table 2 
shows the results with the least time delay when the height was changed everytime. From the 
last column of the table 2, we can see that the fastest detection is 1 second time delay, the 
slowest detection is 433 seconds time delay.  

The processed filtered results can describe the deformation tendency more precisely than the 
observations because the noise in the time series was deleted from the observation time series. 

7. CONLUDING REMARKS  

Because of the colored noise in the GPS measurements, kalman filter with a shaping filtered 
is used in the real-time series. And in this paper the proposed method can be used to detect 
and distinguish deformations and outliers simultaneously. How to determine the state vector 
value when outliers and deformations occur is discussed in detail. An application to the GPS 
static and kinematic time series demonstrates that the method proposed can get the results 
with short time delay. This proposed method is useful to analyse the time series and make the 
right decision when deformations occur. 

Epochs when height was changed  
Detected epoch  results from 4 methods 

True Epochs 
1st method 2nd method 3rd method 4th method 

Earliest 
detection 

1800 1847 1847 1847 1847 1847 
3600 3633 3601 3604 3604 3601 
5400 6015 5833 5833 6015 5833 
7200 7243 7476 7525 7211 7211 
9000 9314 9379 9367 9271 9271 
10800 Not detected 11026 10932 10876 10876 
12600 12776 13465 12811 12710 12710 
14400 14540 14512 14612 14540 14512 
16200 16477 16377 16893 16457 16377 
18000 18128 18327 18297 18273 18128 
19800 20011 19899 20675 20222 19899 
21600 21650 22098 22530 21808 21650 

Max time delay 615s 865s 930 s 615 s 433s 
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