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Abstract. The Vaniček concept of network robustness to observation gross errors, being a 
merger of the reliability and strain analysis, is investigated with respect to basic assumptions 
and the resulting requirements of continuum mechanics. The main objective of the study is to 
precisely determine to what extent the strain analogy can be applied to robustness analysis of 
geodetic networks and to provide explanations throwing some more light on this analogy. The 
following aspects are considered: 
- structure of a network and nature of geodetic observations as non-material links between the 

network nodes; 
- the influence of the reference conditions upon propagation of the effects of observation 

gross error through a network (free networks, tied-up networks); 
- methods of finding the elements of the strain tensor; 
- practical usefulness of the robustness indices in evaluation of the network’s quality. 
The theoretical considerations are illustrated with simple numerical examples.  
 

1. INTRODUCTION 
 
This paper can be considered as a preliminary contribution to the work of the Task Force 
6.1.7. “Continuum mechanics as a support for deformation monitoring, analysis and 
interpretation”, established within the Working Group 6.1. of the FIG Commission 6. Among 
the objectives of the Task Force there is “adaptation of strain theory based on continuum 
mechanics to robustness analysis of geodetic networks” 
Accordingly, the Vaniček concept of network robustness (Vaniček et al. 2001), being a 
merger of the reliability and strain analysis, is investigated with respect to basic assumptions 
and the resulting requirements of continuum mechanics. The main objective of the study is to 
determine to what extent the strain analogy can be applied to robustness analysis of geodetic 
networks and to provide explanations throwing some more light on this analogy. It should be 
noted that the robustness analysis proposed in (Vaniček et al. 2001) is the extension of using 
strain to strength analyses of networks (eg. Dare 1983, Dare and Vaniček 1983). 
We base our approach upon the conviction that for using any type of physical analogy to 
network analysis and design it is necessary, prior to creating any tools for the purpose of the 
analysis, to define the scope of the analogy and indicate its possible limitations. From the 
appropriately chosen analogy we may expect disclosing some new properties of a network 
and getting new measures that describe network’s behaviour. We may also expect to get the 
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possibility for formulating the procedures and criteria that enable one to shape the network’s 
structure with respect to accuracy and robustness.  
We shall focus our attention entirely on the responses of geodetic networks to undetectable 
observation errors, the networks being considered as analytical systems i.e. where no physical 
movements of the network points take place. A more complex problem arises (Michel and 
Person 2003) when these robustness properties are analyzed together with the physical 
behaviour of a network established on a deforming body (being a material continuum) in 
order to monitor its deformations.  
 

2. REVISITING THE MECHANICAL STRENGTH ANALOGY FOR G EODETIC 
NETWORKS  

 
For the purpose of the present paper we shall emphasize that geodetic network is a set of 
material points (nodes) whose relative positions are determined by observations of geo-
metrical quantities, i.e. distances, angles, being non-material links between the nodes. Due to 
such a structure a network displays specific behaviour. When correcting the initial (i.e. 
approximate) coordinates of the nodes on basis of the network adjustment, and thus obtaining 
their final coordinates, the node marks on the ground do not change their physical positions. 
So, a network represented by the adjustment model is a purely analytical system and should 
be analysed as such.  
The formulas that describe geometrical behaviour of such systems due to observation errors 
are analogical to those describing the behaviour of discrete, statically indeterminate 
mechanical systems (in general - trusses with rods connecting arbitrary nodes, or frames with 
elastic joints in the nodes). With the former, final geometry is obtained by the least squares 
(LS) principle, whereas with the latter the static equilibrium is reached by the principle of 
minimum total potential energy. Both the principles are formally identical and, as will be 
shown below, mutually interpretable expressions. 
Let us consider a linear adjustment model with datum constraints. Minimizing the LS 

objective function PvvT=Φ , where )(d oobs llXAv −−⋅= , and adding the constraints, we 
get the constrained normal equations in the form  

 
 

                                        )(d oobsTT llPAXPAA −=⋅                                              (1a) 
                                        0XB =⋅ d                                       (1b)  
 
 

where: A (n×u) – the design matrix (rank deficient), dX(u×1) – the vector of coordinate 

corrections to be determined, P(n×n) – the weight matrix (diagonal), oobs,ll  - the (n×1) 
vectors of the observed and the approximate values of measured quantities; B (w×u) – the 
coefficient matrix in datum constraints (of full rank), dw ≥ , where d = u – rank A, and also 
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Denoting KPAA =T  and fllPA =− )( oobsT  we shall rewrite (1) in the form           
 

                                            fXK =⋅ d                                                                        (2a) 
                      0XB =⋅ d                                     (2b)                                                         
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where (2a) corresponds to fundamental equation of mechanics for a system in equilibrium, 
and (2b) – the boundary conditions. 
 

Therefore, the network adjustment problem can be interpreted as follows:  
-   we have got a discrete, statically indeterminate mechanical system with the stiffness matrix 
K . The system is loaded with the forces f, being the reactions on the imposed changes of 
relative positions of some nodes. We assume that the magnitudes of the forces f are such that 
the responses of the system are within the linear elasticity area. The task is to find the 

movements X̂d  of all the nodes, assuming the boundary conditions 0XB =⋅ ˆd  and a 
behaviour of the system according to the principle of minimum of total potential energy. 

The forces f reacting on the nodes come from the internal forces )( oobs llP −  in the system 

elements, due to the required changes ( oobs ll − ) in their sizes. The i –th element of the matrix 
P is a stiffness parameter, based on the elasticity modulus of the corresponding system 
element. A network with distances only corresponds to a truss with hinged nodes, whereas the 
analogy for a network with distances and angles could be a frame with elastic joints in the 
nodes. For a change in a distance, the Young modulus of a rod is responsible, whereas a 
change in an angle is determined by the Kirchoff modulus for a pair of rods connected by 

elastic joint. The values )(ˆdˆ oobs llXAv −−⋅=  are the resulting changes in the sizes of all the 
elements of the system, necessary to obtain the state of equilibrium of the system.  

 

The solution vector X̂d  can be found, equivalently, from 

 

                                    )()(ˆd oobsTT llPAPAAX B −= −                                                 (3) 

                                    )()c(ˆd oobsTTT llPABBPAAX −+= −1                                  (4) 
 

where: −
BPAA )( T  - the matrix obtained by inverting the coefficient matrix in the ex- 

            tended normal equations. c – the scalar of properly chosen magnitude.  
 

Using this mechanical strength analogy, without resorting to the concept of strain tensor, one 
may analyse behaviour of geodetic networks as if they were discrete mechanical systems.  

 
 

3. ON APPLICABILITY OF STRAIN ANALOGY TO ROBUSTNESS  ANALYSIS OF 
GEODETIC NETWORKS 

 
The problem of applicability of strain tensor analysis to evaluation of network robust-ness 
(and more generally – network strength) is far more complex. A geodetic network, 
represented as an analytical model, does not constitute a continuum by its structure. To use 
strain tensor analysis we have to assume that the model responses to observation errors as if it 
were a continuum and that it yields a continuous point displacement field, expressed by 
algebraic functions of at least C2 class. We shall denote this hypothetic field by        
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where X̂d  is obtained from (3) or (4), with ∆l as in (Vaniček et al. 2001) i.e. 

[ ]Tk
T  ...      ∆ )( 000... 0=l∆ , k∆  being a maximum undetectable error (MUE) in the k–th 

observation.  
 

Theoretically, without specifying the equivalent mechanical system, being the material 
continuum, it is perhaps not possible to provide a convincing support for the above mentioned 
assumption, and hence, for the applicability of strain tensor analogy to network analysis.  
The complexity of the problem lies, to a high degree, in the fact that we undertake the reverse 
task to that of discretization of a material continuum. In the latter, when looking for a suitable 
FEM mesh we are free to gradually increase its density until the values of computed 
parameters are stable enough. In the case of a geodetic network (analogous to a discrete 
mechanical system) we have a fixed structure of nodes and their links. Adding any additional 
link is out of the question, as this would yield a different network.  
By necessity, we shall only confine ourselves to a statement that for any vector of node 
displacements obtained from either (3) or (4) we can find, by means of approximation, the 
continuous point displacement field, wherefrom by differentiation we may deter-mine for 
each node the elements of the tensor T called the displacement gradient (decomposed into the 
strain tensor and the tensor of local rotation), and finally the robustness indices γ,ρ,ϖ , i.e. 
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where: ρ - mean strain (deformation in scale), ω – differential rotation, γ - total shear 
(deformation of local configuration). 
 

This method of evaluation of robustness indices can be described as follows 
 

       ii
ationdifferenti

k
ionapproximat

k )(T)}∆l(ˆd{F)∆l(ˆd γ,ρ,    ϖ→ → → XX             (7) 
 

It should be noted that the process of approximation, where various types of approximating 
functions can be used, has a limited level of accuracy, which affects the accuracy of the 
determined values of the tensor T elements, and eventually the accuracy of the robustness 
indices. In fact, we cannot estimate this accuracy properly as we do not know the actual shape 
of the displacement field.  
The evaluation of the robustness indices can also be done by using the difference method 
based on linear deformation models (as in Vaniček et al. 2001, but slightly modified) 
 

                          ii
ofuse

k )(T)∆l(ˆd γ,ρ,  
modelsn deformatiolinear   ϖ→ →X                   (8) 

 

In this method, for each network node we shall form the redundant system of linear equations 
to be solved for tensor T elements by the LS method 
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where i – denotes the node of interest, j – other node, ijij uuu −=∆ ,  ijij vvv −=∆ . 
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As the j –th nodes (in a number of r) we may choose either all the remaining nodes or the 
neighbouring nodes, i.e. those linked with the i – th node by direct observations. The tensor 
elements can also be computed for r = 2.  
 

In matrix notation the system (9) and its solution will have the form  
 

                             uBt ∆= ;        uBBBt ∆TT )(ˆ
LS

1−=                                               (10) 
 

where: B (2r×4) – the coefficient matrix of full rank, t (4×1) – the vector of tensor elements, 
u∆ (2r×1) – the vector of inter-node displacements. 

 

With the use of the two methods numerical tests have been carried out (see Section 4) to 
investigate to what degree the system (10), as a linear deformation model, corresponds with 
the given inter-node displacements. And, consequently, how representative are the determined 
robustness indices for the deformations around a node (i.e. within the sectors formed by inter-
node lines). It was also the objective of the tests to observe whether the above properties are 
correlated with internal reliability of the network.  
 
 
3. THE DATUM EFFECT UPON THE SHAPE OF THE DISPLACEM ENT FIELD 
 
We shall first recall the notion of a datum, by indicating its three components: 

         Datum = {a reference base;   reference conditions;  a coordinate system},  

where a coordinate system is an auxiliary component.  
Hence generally, change of datum can be the change in any one, in any two or in all of these 
components.  
 

Maintaining the notation for reference conditions as in Eq.(1b), i.e. 0XB =⋅ d , we shall 
distinguish their two characteristic types: 
 

* non-distorting conditions:  w = d, i.e. with B(d×u) such, that the changes in network    
   geometry due to observation errors will not be affected by the reference conditions    
   (e.g. free networks); 
 

* distorting conditions:   w > d,  i.e. with B(w×u),  such that  the changes in network    
   geometry due to observation errors will be affected by the reference conditions (e.g.    
   tied-up networks). 
 

It is known that the reference base and reference conditions used for a network, influence the 
way the effects of observation gross error (or errors) are propagated through a network and 
hence, yield a resulting pattern of node displacements and consequently, the corresponding 
shape of the displacement field. . 
Within the class of non-distorting conditions the shape of the displacement field is dependent 
only on geometrical structure of a network, and consequently, is invariant to the changes of 
the datum. Thus, the robustness analysis with the use of the non-distorting conditions 
discloses the properties of a network itself, not distorted by the datum. Although from the 
practical point of view the use of the distorting conditions is often necessary.  
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4. NUMERICAL TESTS 
 
Figure 1 shows the network variants used in the test computations. The variants are ranked in 
an increasing number of observations, the nodes being kept the same. Thus, each successive 
network has higher internal reliability.  
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Fig. 1 - Network variants used in the tests 

 
The displacements of the network nodes were generated by the maximum undetectable error 
(MUE) in the distance 4-7. The computations of robustness indices for the node 8 in each 
network variant have been done with the use of the difference method and the approximation. 
To examine the shape of the displacement field around this node the difference method has 
been also applied to pairs of the neighbouring lines linking this node with other nodes.  
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Net. variant 1 
      r  [0.09 ÷ 0.66] 
      MUE ≈ 10.2mm 

Net. variant 2 
r  [0.28 ÷ 0.82] 
MUE ≈ 6.3mm 

Net. Variant 3 
r  [0.34 ÷ 0.83] 
MUE ≈ 6.1mm 

Net. variant. 4 
r  [0.44 ÷ 0.89] 
MUE ≈ 5.8mm 

Links  
 taken for  
  a model ρ  ω  γ  ρ  ω  γ  ρ  ω  γ  ρ  ω  γ  

1, 9  1.06 10.15   2.16 0.58  0.46  0.55 -0.61   0.16  0.29 0.26 0.00 0.32 

9, 7  2.89 22.14 4.31 1.38 1.79 0.70  0.51   2.02  0.98 0.54 0.89 0.54 

7, 6 -66.48 -3.77 34.86 -3.74 -0.31 2.40 -5.89  -0.08  3.27 -2.39 -1.24 1.60 

1, 6, 7, 9  0.69  8.79  2.82 0.99 0.93 0.13 -0.15   0.96   0.30 0.45 0.29 0.12 

 1.87 
 

1.78 1.74 1.55 0.30 0.25  0.76   0.34  0.12 0.91 0.10 0.21 1,3,6,7,9, 
4,5 

 q = 1. 98       q*  = 1.22  q = 0.40        q*  = 0.40  q = 0.35        q*  = 0.34  q = 0.18        q*  = 0.17 

 
Table 1- Robustness indices (in ppm) for node 8 

 
To find out to what degree the linear deformation model based on the nodes 1,3,6,7,9,4,5 fits 
their displacements with respect to node 8, we shall use the index q for system inconsistency, 
defined as  

                       
42 −

=
r

T
q vv   ,              where:  utBv ∆−= LS

ˆ ;   r = 7 
 

                        q*  -  the value of q reduced to common value of MUE, i.e. 6.3mm 
 
Table 1 shows a big dispersion of the values of robustness indices among the model options 
for the weakest (in terms of internal reliability) network variant, gradually decreasing for 
successive variants of higher internal reliability. This tendency is also reflected in the 
decreasing values of the index q and its reduced form q*.  This indicates that the displacement 
field is most irregular for the weakest variant. 
The similar trends in the results were observed for the node 9, where the discrepancies in the 
individual columns were smaller.  
For comparison the method of polynomial approximation was applied to the set of all the 
network nodes. It yielded the values of robustness indices much smaller and less diversified 
than the corresponding values for the difference method. The degree of fit into the given node 
displacements was correlated with internal reliability of a network variant in a similar way as 
in the difference method. The discrepancies between the methods obtained in the tests suggest 
that, in general, a special attention should be paid to the choice of the evaluation method 
suitable for a given network.  
The correlation between the robustness indices (shear and scale) and the level of internal 
reliability has been already reported in (Seemkooei 2001). 
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5. PRACTICAL USEFULNESS OF THE ROBUSTNESS INDICES IN EVALUATION 
OF THE NETWORK’S  QUALITY 

The strain-based robustness indices, termed the deformation measures, describe the behaviour 
of the differential surrounding of each individual network node. This surrounding, which does 
not physically exist, is a purely virtual extension of the network’s structure. For the traditional 
reliability concept its link with network accuracy is easily established (Gruendig and 
Bahndorf 1985). As has been emphasized in (Vaniček et al. 2001) such a link between the 
robustness analysis and the covariance analysis does not exist, as they address different 
aspects of a network. Consequently, the deformation measures although may have intuitive 
interpretation, are difficult to be used for practical purposes (e.g. setting realistic robustness 
thresholds, improving the network structure to meet both the accuracy and the robustness 
requirements). 
The weak sides of the strain analogy bring to mind the need for finding a non-tensor 
replacement for network robustness analysis, the network being treated as a discrete system. 
One of the possible approaches, applicable to all types of geodetic networks and sufficient for 
most of practical purposes, could be the use of traditional concepts of internal and external 
reliability. The robustness measures could be as follows: 
      - max. displacement of each network node due to maximum undetectable error in    
         one of the observations, especially of those coming to this node; the displacement  
         would be computed with the use of the specified datum constraints (external  
         reliability);  
      - max. change in each observed network element due to maximum undetectable    
         error in this observation (internal reliability).  
         The change would be computed on the basis of the redundancy numbers and  
         would be invariant to the changes of the non-distorting datum. 
 
 
7.  CONCLUDING REMARKS  
 
It should be emphasized that the resorting to strain tensor analogy to analyse network 
robustness has been an interesting and innovative idea. However, the analogy is expected to 
yield the robustness measures of sufficient accuracy and robustness criteria interpretable in 
terms of the behaviour of geodetic networks themselves, but not of virtual systems being 
extrapolations developed for the sake of analogy. Looking from a purely theoretical point of 
view, we might add a weak side of the strain tensor analogy, that it does not seem to have 
chances to be developed into a generalized approach, i.e. applicable to all types of geodetic 
networks, with different types of datum constraints. Additionally, there can be the cases where 
for some points in a network the elements of the displacement gradient cannot be determined.  
 

Undoubtedly, the strain analogy for the robustness analysis of geodetic networks re-quires further 
studies. Rigorous conditions for the applicability of this analogy to various types of networks (e.g. 
with different levels of internal reliability) should be worked out, with special attention being paid 
to methods of evaluating the elements of the displacement gradient. The findings in this area 
could be the basis for formulating the procedures for network design or improvement. On the 
other hand, a non-tensor replacement for the robustness analysis should be sought after. 
 

Interesting suggestions as regards the applications in geodesy of the analogy based on 
mechanical models can be obtained by observing the evolution of methods for examining the 
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truss structures in civil engineering. Initially, the basic task was the analysis that used a 
discrete description of such structures (structure analysis), and was quite satisfactory for 
modelling of their behaviour. To apply this analysis it was necessary to form a mathematical 
model of the structure, taking into account its geometry, the internal and external acting 
factors, and above all, the properties of the elements connecting the structure’s nodes.  
In the course of time, there emerged a need to design a structure being optimal with respect to 
its weight (i.e. least-weight design). There came the methods of structure synthesis, aimed at 
examining all the trusses, the geometry of which as well as the properties of rods and the 
acting loads, fulfil prescribed conditions. A natural basis for such a class of rod structures was 
a continuum, satisfying given constraints. From the continuum, a discrete structure was 
obtained by optimal removing of the useless material (Holnicki-Szulc et al., 1995). To control 
the optimization process the concept of strain tensor was necessary.  
The approach as above, seems to be worth considering in elaboration of the strain- analogy 
based procedures for the design of geodetic networks, optimal with respect to the number and 
distribution of observed elements as well as their accuracies. 
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