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Abstract. The increased use of areal measurement 
techniques in engineering geodesy requires the 
development of adequate areal analysis strategies. 
In this paper, an outline of a research project is 
presented which aims to develop a spatiotemporal 
continuous collocation in order to describe areal 
deformations.   
The trend component of the collocation is modelled 
by estimated B-spline surfaces in this study. Among 
other form parameters B-spline surfaces are 
characterized by the number of estimated control 
points. Typically, the appropriate number of control 
points is set under consideration of parsimony by 
trial-and-error procedures. In this contribution the 
determination of the number of control points is 
regarded as a model selection problem. Two linear 
model selection criteria – the Akaike Information 
Criterion (AIC) and the Bayesian Information 
Criterion (BIC) – are investigated: Although both 
criteria lead to a penalized maximum likelihood 
estimation, they are based on different principles: 
The AIC is an information-theoretic approach, 
which approximates the Kullback-Leibler distance, 
whereas the BIC is based on Bayes’ theorem and 
approximates the marginal density of the respective 
likelihood. Both criteria are applied to simulated 
data sets and the results are analyzed, compared and 
evaluated. Based on the theoretical backgrounds as 
well as on the empirical evaluation, the criteria’s 
usage is justified. Furthermore, nonlinear methods 
from the field of statistical learning theory are 
investigated.  
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1  Introduction 
 
The increased use of areal measurement techniques 
in engineering geodesy leads to the necessity of 
adequate areal analysis strategies. Commonly, the 

first step of an areal analysis is the modelling of the 
acquired point clouds by means of mathematical 
functions (Ohlmann-Lauber and Schäfer (2011)). 
Because of their flexibility and the associated ability 
to model even complex objects, freeform curves and 
surfaces like B-splines move more and more into 
focus concerning this matter (Koch (2010), Schmitt 
et al. (2013), Harmening and Neuner (2015b)).  
A B-Spline curve C(u) (surface S(u,v)) of degree p 
(and q) is defined by its n+1 ( (n+1)*(m+1) ) 
control points Pi (Pij), the B-spline basis functions 
Ni,p(u) (and Nj,q(v)) as well as a knot vector U = 
[u0,…ur] (and V = [v0,…vs]) (Piegl and Tiller 
(1997)): 

𝑪𝑪(𝑢𝑢) =  �𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢)𝑷𝑷𝑖𝑖 ,
𝑛𝑛

𝑖𝑖=0

  (1)               

𝑺𝑺(𝑢𝑢, 𝑣𝑣) =  ��𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢)
𝑚𝑚

𝑗𝑗=0

𝑁𝑁𝑗𝑗,𝑞𝑞(𝑣𝑣)𝑷𝑷𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=0

,      (2) 

with: u, v = [0,…,1]. (3) 

When estimating a best-fitting B-Spline, a variety of 
unknown parameters has to be determined, leading 
to a nonlinear adjustment problem. In order to 
achieve a linear relationship between the 
observations C(u) (S(u,v)) and the unknown control 
points, the remaining unknown parameters are 
typically excluded from the adjustment procedure 
and are determined a priori: The B-spline’s degree is 
usually set to p = 3 (q = 3), which is generally 
accepted as a reasonable choice (Piegl and Tiller 
(1997)). In Harmening and Neuner (2015a) an 
approach to allocate appropriate surface parameters 
u and v to the observations is presented and Schmitt 
and Neuner (2015) propose a strategy to include the 
determination of the knot vector into the linear 
estimation of the control points. The remaining 
parameter type, which has to be determined, is the 
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number of control points n+1 (and m+1), whose 
influence on the estimation’s result is immense, as 
it determines substantially the B-spline’s 
complexity. Typically, this parameter is chosen 
quite arbitrary by using trial-and-error procedures. 
However, regarding this parameter’s influence on 
the estimation’s result, a justified choice of the 
control points’ number is inevitable in order to 
improve the estimation of B-splines. 
Gálvez et al. (2015) propose a clonal selection 
algorithm in order to determine the optimal number 
of control points and in Harmening and Neuner 
(2014) first investigations about the use of the 
model selection criterion AIC are introduced.  
Model selection criteria like AIC or BIC were 
developed to solve tasks in which the optimal 
model has to be found. They are used in geodesy in 
order to find the best mathematical function to 
model ice mass variations (Baur et al. (2012)) or in 
order to determine the optimal structure of artificial 
neural networks (Neuner (2012)). In the present 
paper the investigations of Harmening and Neuner 
(2014) are carried on and the applicability of those 
model selection criteria to the determination of the 
optimal number of estimated control points is 
investigated.  
The paper is structured as follows: In section 2 the 
fundamental principles of model selection and the 
mathematical basics concerning AIC and BIC are 
presented. Section 3 deals with the concrete 
problem of choosing the optimal number of control 
points using AIC and BIC. The results are analysed, 
compared and evaluated. Section 4 gives an outlook 
to an alternative way to evaluate the complexity of 
functions and in section 5 the results are 
summarized and an outlook is given. 
  
2  Principles of model selection 
 
2.1  Fundamental principles 
 
A common task in engineering geodesy is to 
approximate a finite and noisy data set of size l by 
means of a mathematical function. Typically, the 
model structure is assumed to be known, and a 
fixed number of optimal parameters 𝜽𝜽� has to be 
determined (Cherkassky and Mulier (2007)).  This 
well studied task of parameter estimation is usually 
solved by means of the least squares method or the 
maximum likelihood (ML) theory (Koch (1999)). 

However, the observed phenomena have in general 
physical and mathematical structures which are not 
known in all their diversity a priori. In order to 
avoid a failure of classical parameter estimation in 
cases when the assumed parametric structure is 
wrong, flexible learning methods are used: Those 
methods are built on wide sets of function classes 
f(x, θ), θ ∈ Θ, which are able to approximate each 
continuous function with a certain amount of 
precision. The problem of finding an adequate 
functional description of the data is thus extended 
by choosing the optimal model complexity in 
addition to the optimal parameters (Cherkassky and 
Mulier (2007)).  
Model selection deals with the problem of how to 
choose the optimal model from a given set of 
models, following the principle of parsimony, which 
states that a good model has to be as simple as 
possible while being a good approximation of the 
data (Burnham and Anderson (2002)). The 
compliance of this fundamental principle is identical 
with the finding of a trade-off between the 
function’s bias and variance respectively: The more 
parameters are included into the estimation problem, 
the better the available training data is 
approximated, leading to a small approximation 
error. However, the function’s variance increases, 
which leads to an overfitting. Consequently, the 
validation error of another realization of the same 
phenomenon would be large, as not only the 
observed phenomenon, but also the training data’s 
noise is modelled. On the contrary, models which 
are too simple have a large bias, as they underfit the 
data and are not able to describe the observed 
phenomenon sufficiently well (Cherkassky and 
Mulier (2007)). The optimal model, which has to 
find a balance between simplicity and complexity, is 
chosen by means of model selection criteria, which 
sort the candidate models according to a certain 
score (Claeskens and Hjort (2008)). Those criteria 
can be categorised into two classes (McQuarrie and 
Tsai (1998)): 
 
• Asymptotic efficient criteria are based on the 

quote of George Box, who stated that “all 
models are wrong, but some are useful”: The 
phenomenon which underlies the data is 
assumed to have infinite dimension. As a 
consequence, it is not possible to find a model 
which is able to describe this phenomenon 
completely. Efficient criteria aim to find a 
model, which approximates the underlying truth 
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(Burnham and Anderson (2002)). The general 
approach of such criteria is to minimize a 
distance measure between each model and the 
truth. Using samples with infinite sample size, 
those criteria chose that model which produces 
the minimal quadratic error (McQuarrie and 
Tsai (1998)).  

• Asymptotic consistent criteria assume an 
underlying truth of finite dimension which is 
included into the set of candidate models. 
Those criteria identify the correct model 
asymptotically with probability 1. 
 

In the following the two most popular model 
selection criteria AIC and BIC are used as 
representatives for these two classes in order to 
investigate the applicability of model selection 
criteria to determine the optimal number of B-
spline control points. 
Both criteria are built on ML theory, which choses 
those model parameters 𝜽𝜽� to be optimal, which 
maximize the conditional probability ℒ(𝜽𝜽�|data). 
The principles of ML theory are not regarded in this 
paper, for further information regarding this topic 
please refer to Koch (1999)). 
 
2.1  Akaike Information Criterion (AIC) 
 
The Akaike Information Criterion (AIC) is an 
asymptotic efficient criterion. According to the 
definition of those criteria, a certain distance 
measure has to be minimized. The AIC interprets 
the model as well as the underlying truth as 
probability distributions g and f respectively and 
minimizes the Kullback-Leibler (KL) distance 
between these two distributions:  

𝐼𝐼(𝑓𝑓,𝑔𝑔) =  �𝑓𝑓(𝑥𝑥) log �
𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥|𝜽𝜽)

� dx.  (4) 

The KL-distance is a fundamental information-
theoretical measure and can either be interpreted as 
the distance between two probability distributions 
or as the loss of information which is sustained, 
when the model g is used instead of the truth f.  
As the truth is unknown, the KL-distance cannot be 
minimized directly; instead, the relative KL-
distance is used. As a consequence, it is no longer 
evaluated, which model is the best in an absolute 
sense, but rather, which model is best compared to 
the other candidate models (Burnham and Anderson 
(2002)). 

Akaike (1998) proved that the log-likelihood of the 
estimated parameters is a biased estimator of the 
expected relative KL-Distance and that the bias is 
identical to the number of estimated parameters K. 
These investigations lead to the AIC as a penalized 
log-likelihood criterion: 

AIC =  −2 log �ℒ�𝜽𝜽��data�� + 2𝐾𝐾. (5) 

Although the derivation of the AIC is not based on 
the principle of parsimony, the criterion itself finds a 
trade-off between bias and variance: The log-
likelihood attempts to choose that model producing 
the smallest approximation error, whereas the 
model’s complexity in terms of the number of 
parameters is penalized by means of the second term 
in equation (5) (Claeskens and Hjort (2008)). 
In case of normally distributed errors with constant 
variance, the l residuals 𝜖𝜖̂ of a least-squares 
regression can directly be used to compute the AIC-
scores (Burnham and Anderson (2002)): 

AIC =  𝑙𝑙 log(𝜎𝜎�2) + 2𝐾𝐾,     with 𝜎𝜎�2 =  ∑𝜖𝜖�
2

𝑙𝑙
 (6) 

      

In case of the least-squares estimation of a two 
dimensional B-spline curve, the two dimensions of 
the n+1 control points have to be determined. 
Additionally, the number of estimated parameters 
includes the variance factor σ2 (Burnham and 
Anderson (2002)), which leads to the absolute 
number of estimated parameters 

𝐾𝐾 = 2(𝑛𝑛 + 1) + 1.   (7) 

However, the bias in equations (5) and (6) is only 
equal to the number of estimated parameters K, 
when the sample size is large compared to the 
number of estimated parameters. In cases, when the 
ratio l/K is small (l/K < 40), the use of the modified 
criterion AICC is recommended: 

AIC𝐶𝐶 =  AIC + 
2𝐾𝐾(𝐾𝐾 + 1)
𝑙𝑙 − 𝐾𝐾 − 1

. (8) 

2.2  Bayesian Information Criterion (BIC) 
 
The Bayesian/Schwarz Information Criterion 
(BIC/SIC) was introduced by Schwarz (1978) and is 
an asymptotic consistent criterion. It evaluates the 
posteriori probabilities of the candidate models Mj 

 3 



  
(j = 0,…,n) and choses that one which seems to be 
the most likely according to the given data  
(Cavanaugh and Neath (1999)). 
According to Bayes’ theorem, the posteriori 
probabilities of the models are given by the prior 
probabilities of the models P(Mj), the unconditional 
likelihood of the data f(data) and the marginal 
likelihood 𝜆𝜆𝑛𝑛,𝑗𝑗(data) (Claeskens and Hjort (2008)):   

𝑃𝑃�𝑀𝑀𝑗𝑗�data� =  
𝑃𝑃�𝑀𝑀𝑗𝑗�
𝑓𝑓(data) 𝜆𝜆𝑛𝑛,𝑗𝑗(data) (9) 

𝜆𝜆𝑛𝑛,𝑗𝑗(data) = �𝑓𝑓(data|𝑀𝑀𝑗𝑗 ,𝜽𝜽𝑗𝑗) 𝜋𝜋�𝜽𝜽𝑗𝑗�𝑀𝑀𝑗𝑗�𝑑𝑑𝜽𝜽𝑗𝑗 . (10) 

The latter is computed by means of the prior 
density 𝜋𝜋�𝜽𝜽𝑗𝑗�𝑀𝑀𝑗𝑗� of the parameters 𝜽𝜽𝑗𝑗, given 
Model Mj, as well as the likelihood f(data| Mj, 𝜽𝜽𝑗𝑗) = 
ℒ𝑛𝑛,𝑗𝑗(𝜽𝜽𝑗𝑗) of the data, given the jth model and its 
parameters. 
In equation (9), f(data) is constant across all 
models. Usually, there is no information available 
concerning the models’ prior probabilities, so that 
they are assumed to be equally likely. As a 
consequence, the models’ marginal likelihoods 
𝜆𝜆𝑛𝑛,𝑗𝑗(data) are the critical quantities to be evaluated: 

BIC =  2 log �𝜆𝜆𝑛𝑛,𝑗𝑗(data)�. (11) 

As a closed calculation of this quantity is in general 
impossible, the marginal likelihood is approximated 
by means of the Laplace approximation, which 
results in the final computation of BIC (Claeskens 
and Hjort (2008)): 

BIC ≈  −2 log �ℒ�𝜽𝜽��data�� + log(𝑙𝑙)𝐾𝐾. (12) 

Comparing equations (5) and (12) it can be seen, 
that – although the derivations are based on two 
completely different theories – the criteria 
themselves differ only slightly: AIC and BIC are 
both penalized log-likelihood criteria, with BIC 
imposing a stronger penalty on the models’ 
complexity than AIC for l ≥ 8. 
 

 
3  Determination of the optimal number 
of control points using model selection 
criteria 
 
The derivations of AIC and of BIC are both based 
on the assumption, that the data sets are independent 
identically distributed (iid), which cannot be taken 
for granted in engineering geodesy. For this reason 
the following basic investigations are not based on 
real data sets but on simulated ones which fulfil this 
assumption:  
Starting points are a B-spline curve with six control 
points (n + 1 = 6) and a B-spline surface with 5 * 7 
control points (n + 1 = 5, m + 1 = 7), which are 
superimposed by white noise. In the following the 
two criteria are investigated with regard to the 
repeatability and their behaviour in case of varying 
sample sizes. For this reason, five data sets with 
varying sample sizes are generated. For each sample 
size, the noise generating is repeated five times, 
resulting in 25 data sets which are different 
realizations of the same phenomenon. One of the 
realizations of the B-spline curve can be seen in 
Figure 1. 
The sample sizes, which were used, vary between 
l1=100 and l5=2000 in case of the curve estimation 
and between l1=900 and l5=4900 in case of the 
surface estimation. These sample sizes are smaller 
than data sets resulting from terrestrial laser 
scanning commonly are. However, as they are 
uncorrelated, they are suitable to conclude from 
them to larger and correlated data sets.  
B-spline curves and surfaces respectively are fitted 
through all those data sets while varying the number 
of control points in a range from n + 1 = [4,…,15] in 
case of the curve and n + 1 = m + 1 = [4,…,11] in 
case of the surface. The resulting residuals are used  

Fig. 1 A simulated B-spline curve 
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Table 1. Optimal number of curve control points according 
to AIC. (The curve was generated with n + 1 = 6.)  

Sample size 100 250 500 1000 2000 
Repetition 1 5 6 7 10 9 
Repetition 2 5 6 6 9 15 
Repetition 3 6 6 6 9 9 
Repetition 4 6 7 6 7 9 
Repetition 5 6 6 6 7 9 

Table 2. Optimal number of curve control points according 
to BIC. (The curve was generated with n + 1 = 6.)  

Sample size 100 250 500 1000 2000 
Repetition 1 5 5 5 6 6 
Repetition 2 5 5 6 6 6 
Repetition 3 5 6 6 6 6 
Repetition 4 5 5 6 6 6 
Repetition 5 6 6 6 7 7 

 
to compute the AIC- and BIC-scores (equations (6) 
and (12)) and the number of control points 
producing the smallest score is marked to be 
optimal.  
As pointed out before, the determination of B-
splines is much more complex than just estimating 
the control points. The remaining parameters are 
determined according to Piegl and Tiller (1997) 
(knot vector) and Harmening and Neuner (2015a) 
(curve and surface parameters) respectively.  
The optimal numbers of control points for the curve 
estimation are listed in table 1 (AIC) and in table 2 
(BIC): For sample sizes up to l = 500 AIC identifies 
the actual number of curve control points quite 
successfully: In at least three out of five cases the 
optimal number of control points is identical with 
the actual one and if it is not identical, the optimal 
number is close to the actual one. However, the 
larger the sample size is, the more unstable the AIC 
is concerning the repeatability and the larger the 
discrepancy between the optimal and the actual 
number of control points is. This behaviour is well 
known: AIC follows the notion that more details 
become visible when the sample size grows. 
Consequently more complex models have to be 
preferred (Aho et al. 2014). Altogether AIC has a 
tendency to overfit the data.  
BIC shows a completely contradictory behaviour: 
For the sample size l=100 and l=250, BIC has a 
clearly visible tendency to underfit the data – 
however, the optimal number of curve control 
points is always close to the actual one. The larger 
the sample size becomes, the better BIC choses the  

Table 3. Optimal number of surface control points according 
to AIC. (The surface was generated with n+1=5, m+1=7.)  

Sample size 900 1600 2500 3600 4900 
Rep. 1 8,11 10,11 10,11 6,10 7,9 
Rep. 2 11, 7 7,11 6,11 5,10 7,11 
Rep. 3 5,11 11,10 9,9 11,11 11,11 
Rep. 4 11,11 7,11 7,11 8,11 5,9 
Rep. 5 5,9 6,11 9,7 11,10 5,11 

Table 4. Optimal number of surface control points according 
to BIC. (The surface was generated with n+1 = 5, m+1 = 7.)  

Sample size 900 1600 2500 3600 4900 
Rep. 1 5,7 5,7 7,7 6,10 8,10 
Rep. 2 5,7 5,7 5,9 5,7 5,9 
Rep. 3 5,7 5,7 5,10 5,7 5,10 
Rep. 4 5,7 6,7 7,7 7,7 5,9 
Rep. 5 5,7 5,8 6,7 5,7 5,11 

 
optimal number of control points and – unlike to 
AIC – BIC is stabilizing at the actual complexity. 
A similar behaviour can be observed in case of the 
surface estimation (table 3 and 4): For the major 
parts of the data sets, the number of control points 
chosen by AIC is significantly larger than the actual 
number of control points. Unlike to the curve 
estimation, this behaviour can be studied even if the 
sample size is comparatively small. Only few data 
sets exist, for which the AIC identifies at least one 
of the two parameters correctly; the correct 
combination, however, is never identified. 
The results which are yielded by BIC are much 
more satisfying: Especially, for the sample sizes 
l=900 and l=1600, the number of parameters, which 
is chosen to be optimal, is identical to the actual 
one. However, unlike to the curve estimation, this 
result becomes instable with growing sample sizes. 
Nevertheless, in the major part of the data sets, at 
least one of the parameters is identified correctly. 
Comparing the results of the curve and the surface 
estimation, it is obvious that it is much more 
difficult to identify the correct number of surface 
control points than those of a curve: The estimation 
of a B-spline surface requires the a priori 
computation of two knot vectors and two surface 
parameters for each observation, whereas only one 
of each is required in case of the curve estimation. 
Consequently, the uncertainty which is included into 
the adjustment because of the a priori computations 
is larger in case of the surface than in case of the 
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curve. This uncertainty is compensated by the 
inclusion of additional control points. 
 
Altogether it can be noted, that BIC identifies the 
actual model complexity better than AIC does. 
However, AIC is based on an idea which seems to 
be much more suitable for the concrete problem: 
The curve (surface) estimation is not based on the 
curve (surface) parameters u (u and v) or on the 
knot vector U (U and V) which were used to 
simulate the data, but are determined 
independently. As the observations are overlaid 
with noise, the computed curve/surface parameters 
as well as the knot vectors differ from those, which 
were used to simulate the data sets.  As a 
consequence, the truth is not contained in the set of 
candidate models and the concrete goal of model 
selection in this context should be to find a model 
which approximates the truth in an optimal manner 
(AIC) and not to identify the true model (BIC).  
At first glance, the results presented above seem to 
contradict these basic ideas. However, it must be 
considered, that these basic ideas are valid for the 
asymptotic case, which is not relevant in practise, 
where sample sizes are always finite. As in the 
concrete context the performance properties for 
finite sample sizes are much more important than 
those for infinite sample size, BIC seems to be 
more suitable in order to choose the correct number 
of control points than AIC does, although the 
asymptotic properties might let one suggest 
something different.  
As pointed out before, all investigations are based 
on simulated iid data. A straightforward adaption of 
the two criteria to correlated data is not possible: In 
this case the score-function does not have a local 
minimum and the criteria chose always the 
maximal possible number of control points, as 
additional control points are used in order to model 
the correlations. For this reason a decorrelation of 
the data is necessary, which requires the knowledge 
about the data’s noise behaviour. First 
investigations concerning this task can be found in 
Kauker and Schwieger (2015). 
 
4  An alternative way to describe the 
complexity of B-splines 
 
In the section above a function’s complexity was 
specified in terms of its number of free 
parameters K.  

However, regarding the function y = sin(wx), it 
becomes obvious, that a function having a small 
number of parameters can be quite complex as well 
(Cherkassky and Mulier (2007)). For this reason,  
Vapnik (1998) introduced the Vapnik-Chervonenkis 
(VC) dimension as a complexity measure for 
function classes, which is independent of the 
number of free parameters. The VC dimension is an 
essential component of the statistical learning theory 
and forms the basis for structural risk minimization 
(SRM) which is an alternative to model selection 
criteria.  
This section focuses on the fundamental question, if 
the SRM is at all suitable in order to determine the 
optimal number of parameters. In order to answer 
this question it is investigated, if the VC dimension 
of the respective B-spline reflects the number of 
control points in an appropriate manner. For reasons 
of simplicity, the investigations are limited to the 
two dimensional B-spline curve in the following. 
 
4.1  Definition of the VC dimension 
 
The VC dimension is a quantity which was 
originally used in classification theory and was 
primarily referred to indicator functions. For this 
reason, the descriptive definition of the VC 
dimension is given in terms of the classification 
problem although it can be expanded to real valued 
functions as well. 
In order to define the VC dimension, the term of 
shattering has to be introduced: A class of indicator 
functions shatters a binary data set with sample size 
l, if it can split the data set in all 2l possibilities. 
Figure 2 shows a line in 2D which shatters a data set 
consisting of three points. 

Fig. 2 A 2D line shatters a data set consisting of three points 
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The VC dimension of a class of functions f(x, θ), 
θ ∈ Θ is the maximum number of samples, which 
can be shattered (Cherkassky and Mulier (2007)). 
In case of the two dimensional line the VC 
dimension equals three, as there exists a data set 
consisting of three points, which can be shattered 
by the line (see Figure 2), whereas a data set 
consisting of four points cannot be shattered (see 
Figure 3). 

 
Fig. 3 A set of four points cannot be shattered by a 2D line. 

4.2  Estimating the VC dimension of B-
splines 
 
Although this definition is quite simple and clear, 
analytical values for the VC dimension exist only 
for a few classes of functions. For this reason, 
Vapnik et al. (1994) propose a method to estimate 
the VC dimension empirically.  
The method is based on a theoretically derived 
formula for the maximum deviation between the 
frequencies of errors ξ(l) which is produced by a 
classifier on two randomly labeled data sets Z1 and 
Z2 of size l: 

ξ(𝑙𝑙) = max (|Error(𝐙𝐙1) −  Error(𝐙𝐙2)|) (13) 

ξ(𝑙𝑙) ≤ �

1,                                        if (𝜏𝜏 < 0.5)

𝑎𝑎 
ln(2𝜏𝜏) + 1
𝜏𝜏 − 𝜅𝜅

(�1 +
𝑏𝑏(𝜏𝜏 − 𝜅𝜅)

ln(2𝜏𝜏) + 1
+ 1)

. (14) 

The constants a = 0.16, b = 1.2 and κ = 0.14928 are 
empirically determined by Vapnik et al. (1994). 
With τ = l/h, this formula is a function only of the 
VC dimension h and the sample size l. 
Consequently, the formula can be used to estimate 
the VC dimension. For this purpose empirical 
values for ξ(l) are computed for different sample 
sizes l1, l2 … lk. (for a detailed instruction see 
(Cherkassky and Mulier (2007))). That integer 
value of h, which produces the best fit between the 

k values and the formula (14) is the wanted VC 
dimension.  
In order to use a B-spline curve as a classifier, the 
basic idea of a linear classifier is extended: Given is 
a training data set consisting of l coordinate tuples 
(x1, y1) … (xl, yl) as well as the corresponding, 
randomly chosen labels Li ∈ [0, 1]. Wanted is a 
decision boundary, which separates the training data 
with minimal training error: 

∑(𝐿𝐿𝑖𝑖 −  𝐿𝐿�𝑖𝑖)2 = 𝑚𝑚𝑚𝑚𝑚𝑚. (15) 

In case of a linear decision boundary, the estimated 
labels 𝐿𝐿�𝑖𝑖 are given by: 

𝒙𝒙� = (𝑨𝑨𝑇𝑇𝑨𝑨)−1𝑨𝑨𝑇𝑇𝑳𝑳 (16) 

𝑳𝑳� = 𝑨𝑨𝒙𝒙� (17) 

𝑨𝑨 =  �
𝑥𝑥1 𝑦𝑦1 1
⋮ ⋮ ⋮
𝑥𝑥𝑙𝑙 𝑦𝑦𝑙𝑙 1

�. (18) 

In order to expand this idea to a classification by 
means of a B-spline curve, the input space 
consisting of x- and y-coordinates is transformed 
into a high dimensional feature space as it is usual in 
classification theory (Cherkassky and Mulier 
(2007)). The linear decision boundary in this high 
dimensional feature space is a nonlinear decision 
boundary in the original input space. In order to 
achieve a B-spline curve as a decision boundary, the 
transformation is performed by means of the B- 
spline basis functions resulting into the 
classification problem (16) and (17) with: 

𝑨𝑨 =  �
𝑁𝑁0,𝑝𝑝(𝑢𝑢1) 𝑁𝑁1,𝑝𝑝(𝑢𝑢1) … 𝑁𝑁𝑛𝑛,𝑝𝑝(𝑢𝑢1)

⋮ ⋮ ⋮
𝑁𝑁0,𝑝𝑝(𝑢𝑢𝑙𝑙) 𝑁𝑁1,𝑝𝑝(𝑢𝑢𝑙𝑙) … 𝑁𝑁𝑛𝑛,𝑝𝑝(𝑢𝑢𝑙𝑙)

�. (19) 

Using this classifier, empirical values for ξ(li) can be 
determined according to formula (13). In figure 4 
those empirical values are exemplarily depicted for 
a B-spline curve with p=3 and n+1 = 6. That VC 
dimension h, which produces the best fit between 
these empirical values and the analytical formula 
(14) is the wanted VC dimension of the respective 
B-spline curve.   
In this manner, the VC dimension of different B-
spline curves can be determined (see table 5). As 
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Fig. 4 Empirical values for ξ(li) (blue points) for a B-spline 
curve with p = 3 and n+1 = 6 and the best fitting analytical 
curve (h = 10, red curve). 
 
might be expected, with increasing number of 
control points the VC dimension increases.  
However, it is not possible to derive an analytical 
functional relationship between the number of 
control points and the VC dimension. 
Interestingly, the degree of the B-spline curve does 
not seem to have an influence on the VC 
dimension. 
Altogether it can be noted, that the VC dimension is 
an alternative way to express the complexity of B-
splines. Consequently, methods from statistical 
learning theory like structural risk minimization 
could be an alternative to model selection criteria 
like AIC and BIC.  

Table 5. VC dimension h of B-spline curves with degree p 
and n+1 control points  

n + 1 4 5 6 7 8 
p = 3 6 8 10 11 13 
p = 4  8 10 11 13 
p = 5   10 11 13 

 
 
5  Summary and Outlook 
 
 In the present paper the applicability of the model 
selection criteria AIC and BIC to the determination 
of the optimal number of B-spline control points 
was investigated. Both, for simulated B-spline 
curves and for simulated B-spline surfaces with iid 
noise, the results of BIC were much more satisfying 
than those of AIC: Based on the simulated data, the 
BIC put out to be an appropriate method to 
determine the optimal number of control points. 
However, in order to make the BIC applicable to 
real data sets, the concerning noise behavior has to 

be known in order to decorrelate the data (see 
Kauker and Schwieger (2015)).   
Whereas BIC evaluates the complexity of a function 
by means of the free parameters, the VC dimension 
is a complexity measure, which is more or less 
independent of the number of parameters. First 
investigations showed, that the VC dimension of B-
splines can be estimated, so that it has to be 
investigated, if methods from the statistical learning 
theory represent an alternative to model selection 
criteria. 
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