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Abstract. Modelling correlations within laser 
scanning point clouds can be achieved by using 
synthetic covariance matrices. These are based on 
the elementary error model which contains different 
groups of correlations: non-correlating, functional 
correlating and stochastic correlating. By applying 
the elementary error model on terrestrial laser 
scanning several groups of error sources should be 
considered: instrumental, atmospheric and object 
based. This contribution presents first calculations 
for the Leica HDS 7000 measuring on small test 
pieces made of gypsum and aluminum. The 
determined variances and the spatial correlations of 
the points are estimated and discussed. Hereby, the 
mean standard deviation of the point cloud is up to 
2.5 mm and the mean correlation is about 0.94. 
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1 Introduction 

Terrestrial laserscanning has become a common 
tool for deformation and displacement 
measurements in the geodetic field. In order to 
guarantee the quality of measurements and to get 
realistic deformation and analysis results, it is 
essential to be aware of all error sources and their 
impact on the measurements. A synthetic 
covariance matrix for terrestrial laser scanning is 
necessary in order to model the impacts of the main 
error sources on the variances and the covariances 
and correlations respectively within point clouds. 
These correlations describe stochastic relations 
among several measurements assuming multi-
dimensional normal distributed measurements. The 
covariance matrix can be modelled by applying the 
elementary error model (Schwieger, 1999). Based 
on this model these impacts must be classified into 
different correlation groups first. Since Schwieger 
(1999) introduced a third group of correlations, 
non-correlating, functional correlating and 
stochastic correlating elementary errors can be 
differentiated.  Each group requires an influencing 

matrix and a covariance matrix.  In Koch (2008a) a 
similar procedure based on JCGM (1998) and ISO 
(1995) is developed. The main difference to this 
contribution is the introduction of non-linear 
relationships between influencing errors and 
measured point clouds and the error propagation via 
Monte Carlo Simulation instead using the law of 
error propagation. Koch (2008a, 2008b) did not 
model correlations among the error sources, but 
show the influence of correlations among the 
observations on estimated parameters. 

In this contribution the influencing matrix 
contains appropriate impacts of the elementary 
errors on the point coordinates of the point clouds. 
For defining the covariance matrix, the variances 
and, if stochastic correlating errors are considered, 
the covariances of the elementary errors have to be 
known. These can be defined by using empirical 
investigations or manufacturers’ information, 
among others. Next, the elementary error model has 
to be applied on all the error sources which affect 
observations. These include instrumental, 
atmospheric and object based errors. The 
instrumental error group comprises, e.g. zero point 
error, collimation axis error, vertical collimation 
error and tumbling error. Furthermore, the 
atmospheric group consists of air temperature, air 
pressure and partial water vapour pressure. 
Regarding objects, the impact of errors, such as 
angle of incidence and reflectivity, should be taken 
into account. Afterwards, the synthetic covariance 
matrix can be computed. The results show that the 
impact of instrumental and atmospheric errors may 
cause standard deviations of a few mm. 

The investigations are executed within the 
project “Integrated spatio-temporal modelling using 
correlated observations for the derivation of 
surveying configurations and description of 
deformation processes” (IMKAD).  

2 Elementary error model and 
synthetic covariance matrix 

Retscher
Stempel
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In this section, the structure of the elementary error 
model and its link to the synthetic covariance 
matrix are described.  

2.1 Elementary errors 

Since Hagen (1837) and Bessel (1837) established 
the elementary error model, observations, such as 
horizontal and vertical angle and distances, can be 
treated as random quantities. That implies that any 
realisation l of a measured random quantity L 
deviates from its expected value µl by random 
deviation 𝜀 (Schwieger, 1999). This is, any random 
deviation may be presented by a sum of numerous, 
very small elementary errors 𝑑𝑖:  

𝜇𝑙 = 𝑙 − 𝜀, 𝑎𝑎𝑑     𝜀 =  � 𝑑𝑖

𝑣

𝑖=1

 .  (1) 

Assuming that each elementary error contains the 
same absolute value, negative and positive sign 
may be equally probable (Hagen, 1837). 
Consequently, according to the central limit 
theorem Pelzer (1985) determines the expected 
value of the random deviation 𝜇𝜀 to zero:  

𝜇𝜀 = 𝐸(𝜀) =  � 𝐸(𝑑𝑖

𝑣

𝑖=1

) =  0.  (2) 

The authors assume that systematic effects do not 
occur or, more precisely, are randomized. On closer 
inspection, however, it is revealed that the number 
of elementary errors increases in case of a decrease 
regarding their absolute values. Hence, on the 
assumption of infinite elementary errors, their 
absolute values may be infinitely small. For this 
reason, assuming standard normal distribution is 
justified for standardized random deviations 𝜀 . In 
consequence, normal distribution is applicable to 
the measured random quantity L, considering 
standard deviation 𝜎  and variance 𝜎2 (Pelzer, 
1985): 

𝜀̅ =
𝜀
𝜎 ∼ 𝑁(0,1), 𝑎𝑎𝑑   𝐿 ∼ 𝑁(𝜇𝑙 , 𝜎2). (3) 

In general, modelling normal distributed 
measurements is based on a sum of very small 
elementary errors with changing signs. Due to 
multidimensional observations and their related 
random deviations, the scalars shown in  
eq. (1) and eq. (2) are n-dimensional vectors 
(Pelzer, 1985):  

𝝁𝒍 = 𝒍 − 𝜺, 𝑎𝑎𝑑     𝑬(𝜺) =  � 𝑬(𝒅) = 𝟎
𝑣

𝑖=1

.  (4) 

Besides, handling multi-dimensional data requires 
the classification of elementary errors. In order to 

model the impact on the observations influence 
factors are used for building influencing matrices. 

These matrices contain the effect on the 
covariance matrix of the observations. Schwieger 
(1999) considers three types of correlations which 
are classified below:  

• p non-correlating error vectors 𝜹𝒌 , 
• m functional correlating errors 𝜉j , 
• q stochastic correlating error vectors 𝜸𝒉, 

𝜹𝒌 = �

𝛿1𝑘
𝛿2𝑘

⋮
𝛿𝑛𝑘

� , 𝑘 = 1,2, … , 𝑝, 𝝃 = �

𝜉1
𝜉2
⋮

𝜉𝑚

�, 

  𝑎𝑎𝑑    𝜸𝒉 = �

𝛾1ℎ
𝛾2ℎ

⋮
𝛾𝑛ℎ

� , ℎ = 1,2, … , 𝑞 ,  

(5) 

where the index n defines the number of 
observations. Regarding the non-correlating errors, 
k specifies the kind of elementary errors, whereas p 
describes the number of elementary errors. The 
index m represents the number of functional 
correlating elementary errors 𝜉𝑗 . Additionally, the 
index h involves the type of stochastically classified 
elementary errors and q implies the number of 
stochastic correlating errors. 

The next step is to model the impact on the 
measurements. This can be implemented by partial 
derivatives, which have to be determined 
analytically or numerically. Schwieger (1999) 
induces the influences of different elementary 
errors on the observations by integrating the 
derivatives into influencing matrices.  

As mentioned above, three types of errors have 
to be considered which can now be computed as 
follows: 

• p matrices Dk  for non-correlating errors, 
• one matrix F for functional correlating 

errors, 
• q matrices Gh for stochastic correlating 

errors.  
Based on the model assumption the influencing 
matrices characterise the projection of the 
elementary errors into the observation space.  

The structures of the influencing matrices are 
different from each other because several 
elementary errors affect the measurements 
differently. The matrices Dk and Gh are diagonally 
structured because each elementary error of the 
non-correlating and stochastic correlating classes 
influences exactly one measurement quantity 
functionally (see eq. (6)). In contrast to these cases, 
matrix F is not structured diagonally, since one 
functional correlating error may impact more than 
one measurement quantity (Schwieger, 1999). To 
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clarify this, the elements of Dk, F and Gh are shown 
below:  

𝑫𝒌 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝑙1

𝜕𝛿1𝑘
0 ⋯ 0

 0
𝜕𝑙2

𝜕𝛿2𝑘
0 ⋮

⋮
0

0
⋯

⋱
⋯

⋮
𝜕𝑙𝑛

𝜕𝛿𝑛𝑘⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , 𝑭 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑙1

𝜕𝜉1

𝜕𝑙1

𝜕𝜉2
⋯

𝜕𝑙1

𝜕𝜉𝑚
𝜕𝑙2

𝜕𝜉1

𝜕𝑙2

𝜕𝜉2
⋯

𝜕𝑙2

𝜕𝜉𝑚
⋮

𝜕𝑙𝑛

𝜕𝜉1

⋮
𝜕𝑙𝑛

𝜕𝜉2

⋱
⋯

⋮
𝜕𝑙𝑛

𝜕𝜉𝑚⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , 

  𝑮𝒉 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝑙1

𝜕𝛾1ℎ
0 ⋯ 0

 0
𝜕𝑙2

𝜕𝛾2ℎ
0 ⋮

⋮
0

0
⋯

⋱
⋯

⋮
𝜕𝑙𝑛

𝜕𝛾𝑛ℎ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 . 

(6) 

Summing up all elementary errors results in the 
random deviation vector ε.  
Consequently, Schwieger (1999) considers the 
projection into the observation space as:  

𝜺 = � 𝑫𝒌 ∙ 𝜹𝒌 + 𝑭 ∙ 𝝃 + � 𝑮𝒉 ∙ 𝜸𝒉

𝑞

ℎ=1

𝑝

𝑘=1

  . (7) 

2.2 Synthetic covariance matrix 

For the construction of a synthetic covariance 
matrix the elementary error model is essential. The 
determination of variances, covariances and 
correlations for observations is realised by means of 
a covariance matrix 𝜮𝒍𝒍  which is generally 
structured as shown below: 

𝜮𝒍𝒍 =  

⎣
⎢
⎢
⎡ 𝜎1

2 𝜎12 ⋯ 𝜎1𝑛

 𝜎12 𝜎2
2 ⋯ 𝜎2𝑛

⋮
𝜎1𝑛

⋮
𝜎2𝑛

⋱
⋯

⋮
𝜎𝑛

2 ⎦
⎥
⎥
⎤
  . (8) 

The elements on the main diagonal, 𝜎1
2 … 𝜎𝑛

2 , 
remain the variances which present the stochastic 
dependence of one random value, with index n 
defining the number of measurements. The σ-values 
located on the secondary diagonals contain the 
covariance between two observations. By means of 
the covariance and the square root of the variances, 
the correlation coefficient 𝜌   can be determined 
(Benning, 2010):  

𝜌 =  
𝜎12

𝜎1 ∙ 𝜎2
  . (9) 

Summing up each covariance matrix of the several 
types of elementary errors results in the so called 
“synthetic covariance matrix” 𝜮𝒍𝒍 . Applying the 
law of error propagation on eq. (7) the equation of 
the synthetic covariance matrix is determined 
(Schwieger, 1999):  

𝜮𝒍𝒍 =  � 𝑫𝒌 ∙  𝜮𝜹𝜹,𝒌 ⋅ 𝑫𝒌
𝑻 

𝑝

𝑘=1

+ 𝑭 ∙ 𝜮𝝃𝝃 ⋅ 𝑭𝑻 +  � 𝑮𝒉 ∙ 𝜮𝜸𝜸,𝒉 ⋅ 𝑮𝒉
𝑻

𝑞

ℎ=1

  . (10) 

In the following the covariance matrices of the 
elementary errors are defined: 

• 𝜮𝜹𝜹,𝒌 the covariance matrix for the non-
correlating errors, 

• 𝜮𝝃𝝃 the covariance matrix for the 
functional correlating errors, 

• 𝜮𝜸𝜸,𝒉 the covariance matrix for the 
stochastic correlating errors. 

In this context, the matrices 𝜮𝜹𝜹,𝒌  and 𝜮𝝃𝝃 are 
structured diagonally and only filled on the main 
diagonal (see eq. (11)).  As a result, modelling 
correlations among the elementary errors is 
avoided, e.g., in case k=1, multiplying D1 and 𝜮𝜹𝜹,𝟏 
leads to a new matrix which is filled only on the 
main diagonal.       

𝜮𝜹𝜹,𝒌 =  

⎣
⎢
⎢
⎡𝜎1𝑘

2 0 ⋯ 0
 0 𝜎2𝑘

2 0  ⋮
⋮
0

0
⋯

⋱
⋯

⋮
𝜎𝑛𝑘

2 ⎦
⎥
⎥
⎤
    

𝜮𝝃𝝃 =  

⎣
⎢
⎢
⎡𝜎1

2 0 ⋯ 0
 0 𝜎2

2 ⋯ ⋮
⋮
0

⋮
⋯

⋱
⋯

⋮
𝜎𝑚

2 ⎦
⎥
⎥
⎤
 , 

𝜮𝜸𝜸,𝒉 =  

⎣
⎢
⎢
⎡ 𝜎1ℎ

2 𝜎12ℎ ⋯ 𝜎1𝑛ℎ

 𝜎12ℎ 𝜎2ℎ
2 ⋯ 𝜎2𝑛ℎ

⋮
𝜎1𝑛ℎ

⋮
⋯

⋱
⋯

⋮
𝜎𝑛ℎ

2 ⎦
⎥
⎥
⎤
 . 

(11) 

The covariance matrix 𝜮𝜸𝜸,𝒉 comprises covariances 
among the elementary errors of one type and can be 
completely filled. Its structure is not diagonal. 
Moreover, the related influencing matrix Gh 
consists of functional independent values.  

In the next step, variances and covariances, in 
case of stochastic correlating errors, for all groups 
of errors have to be determined. This turns out to be 
a challenging part because correlations between the 
elementary errors are not known. Thus, they may be 
specified by using manufacturers’ information, 
empirical values or by an estimation based on 
maximum errors. According to Pelzer (1985) one 
can estimate the standard deviation of an 
elementary error by means of its maximum error 
(see eq. (20)). For this, the probability distribution 
must be known. In case of a rectangular distribution 
the maximum error must be multiplied by 0.6, in 
case of a triangular distribution the factor 0.4 is 
applied and for normal distribution one use 0.3. 
Regarding the stochastic correlating group, realistic 
values for estimating the stochastical correlations 
must be known. These represent stochastic relations 
for multi-dimensional normal distributed 
observations. 
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3 Application of the Elementary Error 
Model on Terrestrial Laser Scanner  

In order to apply the elementary error model on 
terrestrial laser scanners, all fundamental sources of 
errors must be identified first. On the one hand, 
measurements are affected by the manufacturing 
accuracy of the instrument itself. On the other hand, 
the laser beam is affected by the atmosphere while 
it runs through. And finally, the monitored object 
influences the observations due to its surface 
characteristics and colour (Kauker and Schwieger, 
2015). Errors that may be not covered by this 
analysis are modelled stochastically and are 
covered by the noise matrix, see equation (13). 

3.1 Elementary errors of a terrestrial 
laser scanner 

There are different systems of terrestrial laser 
scanners (TLS) such as panorama scanners, hybrid 
scanners and camera scanners. However, in this 
paper a panorama scanner is used, the Leica HDS 
7000. For this reason the description of the 
construction is limited to this kind of type. The 
remaining types of scanners are detailed in, e.g., 
Eling (2009). 

A panorama scanner consists of a rotating 
sloped mirror (see Fig. 1) and offers a full 
panorama with a field of view of 360° horizontally 
and 320° vertically. The slope distance s, the 
horizontal angle λ and the vertical angle ϑ define 
the polar observables. In order to determine the 
scanned points in the observation space, these 
elements have to be known. Next, Cartesian 
coordinates can be calculated for each point.  

Figure 1 shows the geometrical relation between 
the polar observables s, λ, ϑ and the Cartesian 
Coordinates X, Y, Z. The transformation can be 
calculated as follows: 

�
𝑋
𝑌
𝑍

� = 𝑠 �
𝑠𝑠𝑎 𝜗 𝑐𝑐𝑠 𝜆
𝑠𝑠𝑎 𝜗 𝑠𝑠𝑎 𝜆

𝑐𝑐𝑠 𝜗
� (12) 

Due to previous investigations, e.g. Deumlich and 
Staiger (2002), Lichti and Lampard (2008) and 
Lichti (2010), it is assumed that the main function 
of a terrestrial laser scanner is similar to a total 
station. Accordingly, it can be assumed that the 
main error sources of a total station may also appear 
for a terrestrial laser scanner. Moreover, their three 
axes like collimation axis, horizontal axis and 
vertical axis are comparable. In consequence, their 
errors can be applied. Deviating from that, Holst  

and Kuhlmann (2011) and Holst et al. (2014) use a 
different approach.  

First, the elementary errors are classified into 
instrumental, atmospheric and object based errors. 
Next, the errors sources are grouped regarding the 
three types of correlations mentioned in section 2. 
In this project, the following instrumental errors are 
investigated: range noise and angular noise, scale 
error, zero point error, collimation axis error, 
horizontal axis error, vertical index error, tumbling 
error and eccentricity of the collimation axis. Most 
of the instrumental errors belong to the functional 
correlated group. Only range noise and angular 
noise are classified to the non-correlated elementary 
errors.  

The data sheet of the HDS 7000 (Leica 
Geosystems, 2011) provides the standard deviations 
of these two errors: the range noise 𝜎𝑟  is 0.5 mm 
and angular noise 𝜎𝑎 is 125 µrad.  

The influencing matrix D is equivalent to the 
identity matrix I. Regarding one measurement, this 
leads to:  

𝜮𝜹𝜹,𝟏 =  �
𝜎𝑎

2 0 0
 0 𝜎𝑎

2 0
0 0 𝜎𝑟

2
� , 𝑫 = 𝑰  . 

 
(13) 

According to Stahlberg (1997), Neitzel (2006a) and 
Neitzel (2006b) the functional relations among the 
further instrumental error sources can be computed 
as follows: 

𝑠𝑘 =  𝑘0 + 𝑠 ⋅ 𝑚0  (14) 
𝜃𝑘 =   𝑎𝑐𝑐𝑠 (𝑐𝑐𝑠 𝑠0 ⋅ 𝑐𝑐𝑠 𝑐0

⋅ 𝑐𝑐𝑠(𝜁 + ∆𝜁 + ℎ0) − 𝑠𝑠𝑎 𝑠0 ⋅ 𝑠𝑠𝑎 𝑐0 ) 
 (15) 

𝜆𝑘 = 𝛼 + ∆𝛼 +
𝑒𝑧

𝑠𝑘 ⋅ 𝑠𝑠𝑎 (𝜁 + ∆𝜁 + ℎ0) 

 + 𝑎𝑎𝑎𝑎 �
𝑐𝑐𝑠 𝑠0 ⋅ 𝑎𝑎𝑎 𝑐0

𝑠𝑠𝑎(𝜁 + ∆𝜁 + ℎ0) +  
𝑠𝑠𝑎 𝑠0 

𝑎𝑎𝑎(𝜁 + ∆𝜁 + ℎ0)� . 
(16) 

Here the index k defines the corrected observables. 
The further parameters are defined as follows:  

 
Fig 1: Main construction elements of  a TLS  
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s: measured slope distance 
k0: zero point error 
m0: scale error 
c0: collimation axis error 
i0: horizontal axis error 
h0: vertical index error 
v0: tumbling error  
ez: eccentricity of the collimation axis 
𝛼: measured horizontal rotation angle 
𝜁: measured vertical rotation angle 
sk: corrected slope distance 
𝜆𝑘:  corrected horizontal rotation angle  

(horizontal angle) 
𝜃𝑘: corrected vertical rotation angle  

(zenith angle) 
 

While rotating around the vertical axis a tumbling 
error may occur. This additionally affects the 
observed values. This error is investigated by 
Neitzel (2006b). The impact of this error can be 
approximated by the functional model as follows, 
whereby αz represents the horizontal direction of 
the projection of the zenith angle into the horizontal 
plane. ζz defines the angle between the vertical axis 
and the direction to the zenith: 

∆𝛼 = 𝑣0 ⋅ 𝑠𝑠𝑎 𝛼𝑧 ⋅ 𝑐𝑐𝑎 𝜁𝑧  (17) 
∆𝜁 = 𝑣0 ⋅ 𝑐𝑐𝑠 𝛼𝑧  (18) 

In order to fill the related influencing matrix F, the 
partial derivatives of eq. (14) to eq. (18) are 
necessary. Moreover, it is substantial to define 
variances for constructing the covariance matrix 
𝜮𝝃𝝃 . Its structure is shown below:  

𝜮𝝃𝝃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝑚0

2 0 ⋯   ⋯ 0
0 𝜎𝑘0

2     ⋮
⋮  𝜎𝑐0

2     
   𝜎𝑖0

2    
    𝜎ℎ0

2  ⋮
⋮     𝜎𝑣0

2 0
0 ⋯   ⋯ 0 𝜎𝑒𝑧

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 .  
(19) 

In Gordon (2008) some of these values are 
investigated, where the zero point error shows a 
maximum value up to 5 mm, the maximum value of 
the vertical index error is -17.69 mgon and the 
maximum value of the collimation axis error is        
-19.62 mgon. According to Neitzel (2006a), the 
maximum value of the horizontal axis error is up to 
-14.6 mgon among others. Thus, these values can 
be used for the approach. Furthermore, the scale 
error and the eccentricity of the collimation axis are 
investigated by Gordon (2008).  

In case the standard deviation σk as well as the 
respective probability distribution of an error δik is 
not known, the best and most probable assumption 
is the normal distribution (Pelzer, 1985): 

𝜎𝑘 ≈ 0.3 ⋅ 𝛿𝑖𝑘[𝑚𝑎𝑚] (20) 

All standard deviations of the instrumental errors 
used for creating the corresponding covariance 
matrices are shown in table 1 below.  
 
Table 1: Standard deviations of instrumental errors 

3.2 Elementary errors of the 
atmosphere  

As mentioned above the laser beam is also affected 
by the atmosphere while running through. 
Computing its impact on the observed values 
requires modelling of the environmental influences, 
such as air temperature, air pressure and partial 
water vapour pressure. The speed of propagation of 
electromagnetic waves depends on the refractive 
index n, the density of the atmospheric layer and 
the wavelength itself. According to Ciddor (1996) 
and Ciddor and Hill (1999), the group refractive 
index 𝑎𝐺𝑟  for a dry standard atmosphere, that is 
drying temperature t = 0 °C, pressure p = 1013.25 
hPa, partial water vapour pressure e = 0 hPa, CO2-
content = 0.0375 % = 375 ppm, can be determined 
as follows:  

𝑁𝐺𝑟 = (𝑎𝐺𝑟 − 1) ⋅ 106 = 287.6155 +
4.88660

𝜆2 +  
0.06800

𝜆4  (21) 

with 𝑁𝐺𝑟 presenting the group refractive index of 
light for normal atmosphere and 𝜆  defining the 
wavelength. As shown in eq. (21), the refractive 
index is dependent on the wavelength. In order to 
calculate the impact, the standard atmosphere must 
be reduced to real atmospheric conditions (Joeckel 
et al., 2008):  

𝑁𝐿 = (𝑎𝐿 − 1) ⋅ 106 = 𝑁𝐺𝑟 ⋅
273.15

1013.25
 
𝑝
𝑇

−  
11.27
𝑇 ⋅ 𝑒

 (22) 

with 𝑁𝐿 comprising the reduction of the standard 
atmosphere to the current atmospheric environment, 
𝑎𝐿 defining the group refractive index of light with 
current environment and T describing the 
temperature (T = t + 273.15 K).  Hereby, the scope 
of eq. (22) is limited to t ranging between – 40 °C, 
…, +100 °C, p ranging between 800-1200 hPa and 

Error source Standard deviation 
range noise 0.5 [mm] 
angle noise  125 [µrad] 
scale error 0.300018 [mm/km]  
zero point error 1.50 [mm]  
collimation axis error  5.89 [mgon] 
horizontal axis error 4.38 [mgon] 
vertical index error 5.31 [mgon] 
tumbling error 0.06 [mm/m] 
eccentricity of the collimation axis 0.60 [mm] 
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0… 100% relative humidity. The accuracy is at 0.5 
ppm. 
Based on eq. (22) the total differential can be 
calculated:  

𝜕𝑁𝐿 =
𝜕𝑎𝐿

𝜕𝑎 ⋅ 𝑑𝑎 + 
𝜕𝑎𝐿

𝜕𝑝 ⋅ 𝑑𝑝 +  
𝜕𝑎𝐿

𝜕𝑒 ⋅ 𝑑𝑒  . (23) 

For a mean atmosphere, with temperature of 17 °C 
(T = 290.15 K), pressure of 1000 hPa and partial 
water vapour pressure of 11 hPa, the differential 
quotients result in (Joeckel et al., 2008):  

𝜕𝑎𝐿

𝜕𝑎 =  −1.00 ⋅ 10−6 �
1
𝐾�,   

𝜕𝑎𝐿

𝜕𝑝 = 0.29 ⋅ 10−6 �
1

ℎ𝑃𝑎�,   

 
 
 

(24) 

𝜕𝑎𝐿

𝜕𝑒 =  −0.04 ⋅ 10−6 �
1

ℎ𝑃𝑎�  

By means of eq. (24), the impact of the atmospheric 
parameters on distance measurements can be 
approximated (e.g., Rüeger 1990): 

∆𝑎 ⋅ 106 =  −1.00 ∆𝑎 + 0.29 ∆𝑝 − 0.04 ∆𝑒 (25) 

Table 2 below shows the impact on the distance 
measurements depending on changes of 
temperature, pressure and partial water vapour 
pressure.  

Table 2: Standard deviations of atmospheric errors 
 dt / dp / de ds gt / gp / ge 
temperature 1 °C 1 [ppm] 1.00 [ppm / °C] 
pressure 3.4 hPa 1 [ppm] 0.29 [ppm/hPa] 
partial water 
vapour 
pressure 

25 hPa 
 

1 [ppm] 
 

0.04 [ppm/hPa] 

 
Each of the atmospheric elementary errors is 
classified to the stochastic correlating group. In 
order to gain an impression about the impact of the 
stochastic influencing values, the parameters of 
table 2 are used. In the next step, it is essential to 
define variances and covariances for designing the 
corresponding covariance matrix  𝜮𝜸𝜸,𝒉 . Regarding 
one measurement, this leads to:  

𝜮𝜸𝜸,𝟏 =  �
𝜎𝑡

2 𝜎𝑡𝑝 𝜎𝑡𝑒

 𝜎𝑡𝑝 𝜎𝑝
2 𝜎𝑝𝑒

𝜎𝑡𝑒 𝜎𝑝𝑒 𝜎𝑒
2

�. 
 
(26) 

In this research it is assumed that these values do 
not dependent on their location. In this special case 
the relation is no longer stochastic, but functional. 
Inevitably, the correlations become  ±1  and the 
stochastic correlation modelling is changed to 
functional modelling instead.    

3.3 Elementary errors based on the 
monitored objects 

The third source of errors that has to be considered 
is linked to the surface quality and colour of the 
monitored objects. After the laser beam hits the 
object’s surface it is immediately reflected. 
Thereby, the intensity of the reflection depends on 
the following characteristics of the object.  

 
• Penetration depth • Colour 
• Roughness • Edges 
• Reflectivity  

 
Additionally, the scanning geometry is decisive due 
to the angle of incidence.  

Considering the intensity of a reflected signal at 
its maximum, there are four attributes affecting the 
measurements: penetration depth, roughness, 
reflectivity and colour. Previous investigations, e.g. 
(Schäfer, 2011) and (Zámečniková and Neuner, 
2014), have shown complex connections of phase-
based measurements among these four attributes. 
Based on this knowledge, these four elementary 
errors are classified as stochastic correlating 
because a separation is not possible right now. 
Whereas the angle of incidence and the interaction 
regarding laser beams hitting edges can be 
approximated functionally. The bigger the angle of 
incidence, the less energy of the signal is thrown 
back. By means of Lambert’s cosine law the 
intensity of the reflected signal is proportional 
depending on the cosine of the angle of the incident 
beam.  

3.4 Overview of classification 

Table 3 below shows the classification of all 
elementary errors which are investigated in this 
publication. The elementary errors used for 
computing 𝜮𝒍𝒍 are marked with *. 
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Table 3: Classification of elementary errors 
Type of correlation Error source  

non range noise  * 
angle noise  * 

stochastic 

temperature * 
pressure * 
partial water vapour pressure * 
penetration depth  
roughness  
reflectivity  
colour  

functional  

angle of incidence  
edges  
scale error * 
zero point error * 
collimation axis error  * 
horizontal axis error * 
vertical index error * 
tumbling error * 
eccentricity of the  

collimation axis 
* 
 

4 Simulation 

In order to evaluate and improve the model for the 
synthetic covariance matrix, small sample pieces 
are necessary. Considering the impact on the laser 
beam caused by the material, the investigated 
sample pieces consist of aluminium and gypsum. 

4.1 Test pieces 

Figure 2 shows two boards of different materials: 
aluminium and gypsum made by a 3D printer. To 
compare the impact of these two materials on the 
observations, both boards are produced with the 
same size: 30 cm x 25 cm. After the production 
both are measured with the API Radian Laser 
tracker in order to receive reference values for the 
future evaluation of the synthetic covariance matrix.  
For computing the synthetic covariance matrix 
regarding the boards of figure 2, an equivalent 
angle grid must be generated first. Therefore, the 
point distance of general scanning settings is 
chosen: 6.283 mm at 5 m scanning distance.  

In figure 3, the corresponding grid is displayed.  

Next, the synthetic covariance matrix can be 
computed by using instrumental errors as 
mentioned in section 3.1. Additionally, the 
atmospheric conditions within the scanning area 
have to be considered. Due to the small scanning 
area it is assumed that the variances and 
covariances are not dependent on their location. 
The errors are modelled as functional correlating. 
For this reason, the same atmospheric values are 
generated for the whole board using σt = 0.01 °C, 
σp = σe = 10-8 hPa. Object based impacts are 
ignored for the moment. 

4.2 Results 

According to eq. (10), the synthetic covariance 
matrix 𝜮𝒍𝒍  comprises variances and covariances of 
all points within the cloud. Due to its structure, 
given in eq. (27), variances regarding each 
coordinate axis are available. 

𝜮𝒍𝒍 =  

⎣
⎢
⎢
⎢
⎢
⎡ 𝜎𝑥1

2 𝜎𝑥1𝑦1 𝜎𝑥1𝑧1 ⋯ 𝜎𝑥1𝑧𝑛

𝜎𝑥1𝑦1 𝜎𝑦1
2 𝜎𝑦1𝑧1   

𝜎𝑥1𝑦1 𝜎𝑦1𝑧1 𝜎𝑧1
2  ⋮ 

⋮   ⋱  
𝜎𝑥1𝑧𝑛  ⋯  𝜎𝑧𝑛

2 ⎦
⎥
⎥
⎥
⎥
⎤

 . (27) 

Afterwards, the error of position (according to 
Helmert) can be calculated for each point among 
the cloud by using the variances on the main 
diagonal (Pelzer, 1985): 

𝜎𝑥𝑦𝑧𝑖 =  �𝜎𝑥𝑖
2 + 𝜎𝑦𝑖

2 + 𝜎𝑧𝑖
2  , 𝑠 = 1, … , 𝑎.  (28) 

The results are displayed in figure 4. As expected, 
the positional standard deviation is best in the 
middle of the board and gets worse in the direction 
of each corner. Moreover, it is clearly visible that 
the range between the minimum and the maximum 
is at 1 µm. This small difference is caused by the 

  
Fig 2: Test pieces (left: aluminium, right: gypsum) 

 
Fig 3: Simulated point cloud, shortest distance in the 
centre 
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small area of the test piece and the ignorance of 
object based impacts. Nevertheless, these values are  
particularly pessimistic because some empirical 
determinations show more optimistic values. The 
future will show if these values may be evaluated 
by new empirical ones for the HDS 7000. 

In order to determine the correlation matrix Rll 
which contains the spatial correlations within the 
point cloud, the synthetic covariance matrix must 
be standardized as follows:  

𝑹𝒍𝒍 = 1
�𝑑𝑖𝑎𝑑(𝜮𝒍𝒍)

∗  𝜮𝒍𝒍 ∗ 1
�𝑑𝑖𝑎𝑑(𝜮𝒍𝒍)

  . (29) 

Due to its structure, that is equal to the one of 𝜮𝒍𝒍, 
correlations for each axis can be calculated easily. 

 A closer look into the correlations of the x- 
coordinates confirms the assumption that the 
correlations depend on the distances to each other. 
The greater the distance between the coordinates, 
the less become their spatio correlations. Figure 5 
shows a tiny tendency. The differences might be 
bigger in case the point density is less. This 
depends on the size of the object, the scanning 
solution and the distance between TLS and object. 

The small variations of the variance as well as the 
high non-changing correlations are caused by the 
almost identical influences of the instrumental and 
atmospheric errors. The object based errors would 
cause higher variations. 

5 Conclusion and future work 

Summing up, a model for computing the synthetic 
covariance matrix for monitoring by terrestrial laser 
scanning is presented. Hereby, different error 
sources like instrumental and atmospheric errors are 
considered. For first calculations the atmospheric 
impact is simplified due to laboratory scanning 
conditions. It can be shown that the modelled 
standard deviations of the point cloud are about 2.5 
mm which primarily depends on the value of the 
instrumental error variances and the resolution of 
the scanning. Furthermore, the correlations of the x-
coordinates are investigated. Hereby, it can be 
noticed that the intensity of the correlations reaches 
more than 0.95 and is depending on the point 
distances to each other.  

In the next step in the future, the synthetic 
covariance matrix must be evaluated by empirical 
values and by multiple scans in order to provide 
temporal correlations between observations. 
Moreover, using more realistic instrumental error 
variances of the HDS 7000 might improve the 
modelled standard deviations. In addition, it is 
essential to take object based impacts into account 
in order to compute the errors as realistically as 
possible. Furthermore, other test bodies like 
barrages and dams will be investigated to model 
atmospheric impacts. 
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