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ABSTRACT 

In this contribution, a procedure for deciding, whether the oscillation of a surveyed structure is damped or 
not, is proposed. For this purpose, two bootstrap tests under fairly general assumptions regarding auto-
correlation and outlier-affliction of the random deviations (“measurement errors”) are suggested. These tests 
are derived from an observation model consisting of (1) a parametric oscillation model based on trigonometric 
functions, (2) a parametric auto-correlation model in the form of an autoregressive process, and (3) a parametric 
stochastic model in terms of the heavy-tailed family of scaled t-distributions. These three levels, which generalize 
current observation models for oscillating structures, are jointly expressed as a likelihood function and jointly 
adjusted by means of a generalized expectation maximization algorithm. Closed-loop Monte Carlo simulations 
are performed to validate the bootstrap tests. Visual inspection of models fitted by standard least-squares 
techniques are shown to be insufficient to detect a small significant damped oscillation. Furthermore, the tests 
are applied to a controlled experiment in a laboratory environment. The oscillation was generated by means of 
a portable shaker vibration calibrator and measured by a reference accelerometer and a low-cost accelerometer.  

 

I. INTRODUCTION 

Models for periodic phenomena based on 
trigonometric functions have played an important role 
in geodesy for decades (Vanicek, 1969; Wells et al., 
1985; Craymer, 1998; Pagiatakis, 1999; Mautz and 
Petrovic, 2005; Kaschenz and Petrovic, 2005; Psimoulis 
et al., 2008; Neitzel et al., 2011; Neitzel et al., 2012; 
Lehmann, 2014; Bogusz and Klos, 2016). Oscillations 
may be accurately measured in various ways, for 
instance, by means of a global navigation satellite 
system (GNSS) receiver, a ground based synthetic 
aperture radar (GBSAR), a terrestrial laser scanner (TLS), 
a laser tracker, an accelerometer and an image-assisted 
total station (cf. Neitzel and Schwarz, 2017; 
Omidalizarandi et al., 2018). The stochastic model 
employed for the inference of oscillation models greatly 
depends on the kind of observable.  

Besides the variances of the random deviations, auto-
correlations play a large role for such electronic 
instruments measuring at a high sampling rate and 
should therefore be taken into account in deformation 
analysis in general (cf. Kuhlmann, 2003). While 
covariance functions and covariance matrices have 
been traditionally employed for this purpose, 
autoregressive (AR) processes have become 
increasingly popular since the early 2000s in diverse 
fields of geodetic science (e.g., Schuh, 2003; Nassar et 
al., 2004; Park and Gao, 2008; Li, 2011; Luo et al., 2012). 
These studies demonstrated that AR models can be 
easily fitted to geodetic data in connection with least-

squares estimation (LSE) or Kalman filtering techniques. 
While constituting a parsimonious time-domain model 
that can easily be combined with a functional 
observation model, AR processes can be transformed 
into and interpreted through a covariance 
function/matrix and a spectral density function. 
Therefore, the specification and fitting of an AR 
correlation model are adopted also in the current 
contribution.  

Outliers constitute another phenomenon often found 
in geodetic data. A common approach to dealing with 
outliers consists of a robust (i.e., outlier-resistant) 
method of iteratively reweighted least squares (IRLS) 
based on an error law whose defining probability 
density function (pdf) has “longer tails” than a Gaussian 
bell curve (e.g., the L1-norm estimator and Huber 
estimator). Thus, when outliers are defined to be errors 
larger than three times the standard deviation of a 
random deviation (see Lehmann, 2013), they obtain 
substantially more probability mass via IRLS (reflected 
by lower weights) than with (uniformly weighted) LSE. 
To obtain estimation results that are as realistic as 
possible, it is desirable to match the shape of the pdf or 
the error law with the actual distribution of the 
residuals/outliers (cf. Wisniewski, 2014). To enable this, 
it makes sense to use a flexible family of error laws 
having suitable mathematical properties and having - 
besides a scale parameter that accounts for the 
variance of a random deviation - at least one shape 
parameter that controls the thickness of the tails. To 
foster automatization of the adjustment procedure, the 
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heavy-tailed family of scaled t-distributions is employed 
in this contribution. Its shape parameter/tuning 
constant is the degree of freedom, which can be 
estimated as part of an IRLS procedure (cf. Koch and 
Kargoll, 2013), so that this robust estimator has been 
called self-tuning (Parzen, 1979). Standard LSE 
corresponds to the special case, where the degree of 
freedom takes a large value.  

Parameter estimation is an intermediate step that 
reduces the observations to sufficient statistics, which 
are then used to express the test statistic (cf. Kargoll, 
2012). Under the standard assumptions of linear 
observation equations involving normally distributed 
random deviations and a given covariance or weight 
matrix, optimal (uniformly most powerful invariant) 
parameter tests are readily available (cf. Teunissen, 
2003). As these assumptions do not hold under the 
given model, we make use of bootstrap tests (cf. 
McKinnon, 2007), which can be tailored to such 
nonstandard model assumptions. In combination with 
Monte Carlo (MC) simulation (cf. Koch, 2018), such tests 
do not require knowledge of the distribution of the test 
statistic employed. In Section II, we develop various 
bootstrap tests for deciding, whether an observed 
oscillation is damped or not. This methodology extends 
recent developments of bootstrapping techniques in 
geodesy for confidence intervals (Neuner et al., 2014), 
parameter estimation (e.g., Angrisano et al., 2018) and 
uncertainty quantification (Lösler et al., 2018), to the 
domain of hypothesis testing. In Section III, it is shown 
how MC simulations are carried out to estimate the 
type-I error probabilities and power functions of the 
bootstrap tests. The performance of these tests is 
assessed and contrasted with the standard F-Test. The 
limits of standard least-squares fitting and visual 
inspection of resulting model plots for the purpose of 
detecting a damped oscillation are also explored. 
Subsequently, the proposed tests are applied to 
measurements of an oscillation generated by a portable 
shaker vibration calibrator and recorded both by the 
associated reference accelerometer and a low-cost 
accelerometer. Section IV draws some conclusions and 
gives an outlook to potential applications of the tests.  

 

II. METHODOLOGY 

A. Observation Model 

When observations describe a time-dependent 
undamped oscillation, one may use the model 

 

ℎ𝑡(𝜷) =
𝑎0

2
+ ∑ 𝑎𝑗 cos(2𝜋𝑓𝑗𝑥𝑡) + 𝑏𝑗 sin(2𝜋𝑓𝑗𝑥𝑡) (1)

𝑀

𝑗=1

 

 

consisting of an unknown offset 
𝑎0

2
 and a sum of 

sinusoids, which involve unknown coefficients 𝑎𝑗 and 

𝑏𝑗, unknown frequencies 𝑓𝑗, and specified equidistant 

time instances 𝑥𝑡 for 𝑡 = 1, … , 𝑛. The unknowns 
𝑎𝑗 , 𝑏𝑗 , 𝑓𝑗 (𝑗 = 1, … , 𝑀) form the vector 𝜷 of functional 

model parameters. In the case of a damped oscillation, 
the deterministic model (1) is extended to 

  

ℎ𝑡(𝜷, 𝝃) =
𝑎0

2
+ ∑ [𝑎𝑗 cos (2𝜋𝑓𝑗√1 − 𝜉𝑗

2 𝑥𝑡)

𝑀

𝑗=1

+ 𝑏𝑗 sin (2𝜋𝑓𝑗√1 − 𝜉𝑗
2 𝑥𝑡)]  

× exp(−2𝜋𝜉𝑗𝑓𝑗𝑥𝑡)                          (2) 

 

where 𝜉𝑗 is the so-called damping ratio coefficient and 

𝑓𝑗𝑑 = 𝑓𝑗√1 − 𝜉𝑗
2 the corresponding damped frequency 

(cf. Amezquita-Sanchez and Adeli, 2015). Clearly, the 
undamped oscillation model (1) is nested inside the 
damped oscillation model (2) since the former results 
from the latter by setting all damping ratio coefficients 
equal to zero.  

For both kinds of deterministic model, the 
observations 𝑙𝑡 are considered to be subject to auto-
correlated random deviations  

 

𝑒𝑡 = ∑ 𝛼𝑗𝑒𝑡−𝑗 +
𝑝
𝑗=1 𝑢𝑡                  (3) 

 

The coefficients 𝜶 = [𝛼1 ⋯ 𝛼𝑝]𝑇 of this AR(p) model are 

treated as unknown parameters to take unknown forms 
of auto-correlation into account. The boundary 
conditions are simply fixed by setting 𝑒0 = 𝑒−1 = ⋯ =
𝑒1−𝑝 = 0. The AR model order 𝑝 has to be specified 

based on prior information or through a statistical 
model selection procedure. To set the level of precision 
and to model outliers of unknown absolute frequency 
and magnitudes, the white noise components 𝑢1, … , 𝑢𝑛 

are assumed to be stochastically independent and to 
follow a scaled, centred t-distribution with unknown 
scale factor 𝜎2 and degree of freedom 𝜈, symbolically  

 

𝑢𝑡~𝑡𝜈(0, 𝜎2).                              (4) 

 

This combined parametric auto-correlation and error 
model allows for a self-tuning, robust, maximum 
likelihood estimation of the parameters. This 
estimation is based on the log-likelihood function  
 

log 𝐿(𝜷, 𝝃, 𝜶, 𝜎2, 𝜈; 𝒍) = 𝑛 log [
Γ(

𝜈+1

2
)

√𝜈𝜋𝜎2 Γ(
𝜈

2
)
] −

𝜈+1

2
×

                                                ∑ log [1 +
1

𝜈
(

𝑢𝑡

𝜎
)

2

]𝑛
𝑡=1   (5)  

 
where 𝑢𝑡 is expressed through (3) and the 

observations equations as functions of 𝜷, possibly 𝝃, 
and 𝜶 . The maximization of this log-likelihood function 
constitutes an alternative to a least-squares approach 
based on outlier-elimination and noise reduction 
through filtering. One advantage of the former 
approach is that a single algorithm and adjustment 
routine can be devised while avoiding some pre-
processing steps. Furthermore, (5) allows for likelihood 
ratio (LR) tests about the model parameters or 
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constraints thereof, as the deterministic and stochastic 
model assumptions are included.  
 

B. Hypotheses 

Besides estimating model parameters, we wish to 
identify an adequate oscillation model from (1) and (2). 
Since parsimonious observation models are preferred 
over models that include unnecessary parameters, it is 
desirable to test the null hypothesis 𝐻0 that the 
damping ratio coefficients 𝝃 are equal to zero. The 
alternative hypothesis can simply be specified to be the 
negation of 𝐻0, so that the problem is to test  

 

𝐻0: 𝝃 = 𝟎        versus        𝐻1: 𝝃 ≠ 𝟎.                       (6) 

 

A simple case is given by testing the damping ratio 
coefficient 𝜉 associated with a single natural frequency 
of the oscillating structure (the vector 𝝃 thus reduces to 
a scalar quantity).  

One possibility of measuring the deviation from 𝐻0 is 

to compute the weighted square sum 𝑇 = 𝝃̂𝑇𝚺̂𝝃̂𝝃̂
−1𝝃̂/𝑀, 

based on estimates 𝝃̂ and their joint a posteriori 

covariance matrix 𝚺̂𝝃̂𝝃̂. In the special case of 

uncorrelated and normally distributed random 
deviations (corresponding to 𝑝 = 0 and 𝜈 → ∞), the 
kind of Wald (W) test statistic 𝑇 would approximately 
follow Fisher’s 𝐹𝑀,𝑛−𝑢-distribution, where 𝑢 = 4𝑀 + 1 

is the total number of functional parameters 𝜷, 𝝃 in 
model (2). However, due to the stochastic model based 
on the family of scaled t-distributions, the test statistic 
𝑇 might not follow any standard distribution to a 
sufficient level of approximation. This hindrance, 
however, does not prevent the solution of the testing 
problem (6) since simulation-based bootstrap tests do 
not require the specification of a test distribution. A 
second natural test statistic is based on the difference  

 

𝐿𝑅 = log 𝐿(𝜷̃, 𝟎, 𝜶̃, 𝜎̃2, 𝜈; 𝒍) − log 𝐿(𝜷̂, 𝝃̂, 𝜶̂, 𝜎̂2, 𝜈̂; 𝒍) 
 

of the log-likelihoods at the constraint and unconstraint 
maximum likelihood estimates. Like the test statistic 𝑇, 
the LR test statistic 𝑇𝐿𝑅 = −2 𝐿𝑅 (cf. Section 2.5.6 in 
Kargoll, 2012) generally does not have a standard 
distribution, so that it will also be carried out by means 
of bootstrapping.  

 

C. The Bootstrap Tests 

The idea of a bootstrap test is to generate a large 
number 𝐵 of observation vectors under the true 𝐻0, to 
compute the 𝐵 values that the test statistic takes for 
these generated measurement series, and to check 
whether the value of the test statistic obtained for the 
actual measurement results is extremely large in 
comparison to the test values obtained under 𝐻0. These 
comparisons replace the comparison with a critical 
value derived from a fully specified test distribution 
(which is unknown in the present situation). As with a 
classical hypothesis test, the significance level 𝛼 may be 

fixed in advance. Then, given a vector 𝒍 of measurement 
results, the order 𝑀 of the oscillation model (1)/(2) and 
the order 𝑝 of the AR model (3), the following steps can 
be carried out in order to arrive at the test decision (see 
also Fig. 1.  

1. Estimation step: The generalized expectation 
maximization (GEM) algorithm described in 
Alkhatib et al. (2018) is used to compute: 

a) Parameter estimates 𝜷̂, 𝝃̂, 𝜶̂, 𝜎̂2, 𝜈̂, 

covariance matrix 𝚺̂𝝃̂𝝃̂ and white noise 

components 𝑢̂1, … , 𝑢̂𝑛 in the damped 
harmonic oscillation model (2). The 
nonlinear model is linearized within each 
GEM iteration (see the Appendix for the 
derivation of the Jacobi matrix);   

b) Parameter estimates 𝜷̃, 𝜶̃, 𝜎̃2, 𝜈 and white 
noise components 𝑢̃1, … , 𝑢̃𝑛 in the 
undamped harmonic oscillation model (1). 
The Jacobi matrix of this nonlinear model is 
obtained from the Jacobi matrix used in a) by 
setting 𝝃 = 𝟎. 

2. Testing step: The test statistic 𝑇 = 𝝃̂𝑇𝚺̂𝝃̂𝝃̂
−1𝝃̂/𝑀 or 

𝑇𝐿𝑅 = −2 𝐿𝑅 is computed.  
3. Simulation step: Firstly, 𝐵 white noise vectors 

  

𝒖(1) = [𝑢1
(1)

⋯ 𝑢𝑛
(1)

]
𝑇
 

  ⋮             

𝒖(𝐵) = [𝑢1
(𝐵)

⋯ 𝑢𝑛
(𝐵)

]
𝑇
 

 

are generated in one of the following two variants:  
a) Parametric bootstrapping: each white noise 

component 𝑢𝑡
(𝑘)

 (𝑡 = 1, … , 𝑛; 𝑘 = 1, … , 𝐵) is 
generated randomly from the fitted t-
distribution 𝑡𝜈̂(0, 𝜎̂2).  

b) Nonparametric bootstrapping: each 𝑢𝑡
(𝑘)

 is 
“randomly drawn” from the fitted white 
noise series 𝑢̂1, … , 𝑢̂𝑛 “with replacement” by 

generating random numbers 𝜏𝑡
(𝑘)

 from the 
discrete uniform distribution 𝑈(1, 𝑛). Each 

number 𝜏𝑡
(𝑘)

 defines an index, and the 
associated value 𝑢̂

𝜏𝑡
(𝑘)  of the fitted white 

noise series defines the newly generated 

white noise component  𝑢𝑡
(𝑘)

= 𝑢̂
𝜏𝑡

(𝑘) . 

Secondly, the white noise series are inserted into 
the fitted AR models to generate the coloured 

noise components 𝑒𝑡
(𝑘)

= ∑ 𝛼̂𝑗𝑒𝑡−𝑗
(𝑘)

+
𝑝
𝑗=1 𝑢𝑡

(𝑘)
 

based on the initial values 𝑒0
(𝑘)

= ⋯ = 𝑒1−𝑝
(𝑘)

= 0, 

resulting in the vectors 
 

𝒆(1) = [𝑒1
(1)

⋯ 𝑒𝑛
(1)

]
𝑇
 

               ⋮             

          𝒆(𝐵) = [𝑒1
(𝐵)

⋯ 𝑒𝑛
(𝐵)

]
𝑇
 

 

Thirdly, these realizations of the random 
deviations are added to the deterministic model 
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Figure 1. Flowchart of the computational steps of the bootstrap tests described in Section II.C. The random number generation 
within the simulation step is shown here by employing the MATLAB routines trnd (t-distribution) and randi (discrete uniform 
distribution). 
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fitted under 𝐻0, that is, 𝑙𝑡
(𝑘)

= ℎ𝑡(𝜷̃) + 𝑒𝑡
(𝑘)

, 

thereby producing the observation vectors 
 

𝒍(1) = [𝑙1
(1)

⋯ 𝑙𝑛
(1)

]
𝑇
 

               ⋮             

          𝒍(𝐵) = [𝑙1
(𝐵)

⋯ 𝑙𝑛
(𝐵)

]
𝑇
 

 

The aforementioned GEM algorithm is then used 

to compute, for every 𝒍(𝑘), the parameter 

estimates 𝝃̂(𝑘) and covariance matrix 

𝚺̂𝝃̂(𝑘)𝝃̂(𝑘) required for evaluating the test statistic 

via 𝑇(𝑘) = 𝝃̂(𝑘)𝑇𝚺̂
𝝃̂(𝑘)𝝃̂(𝑘)
−1 𝝃̂(𝑘). The algorithm also 

outputs log 𝐿(𝜷̃(𝑘), 𝟎, 𝜶̃(𝑘), 𝜎̃2(𝑘), 𝜐̃(𝑘); 𝒍) and 

log 𝐿(𝜷̂(𝑘), 𝝃̂(𝑘), 𝜶̂(𝑘), 𝜎̂2(𝑘), 𝜐̂(𝑘); 𝒍) with respect to 
the adjusted constraint and unconstraint model, 

necessary for the determination of 𝑇𝐿𝑅
(𝑘)

.  

4. Evaluation step: The p-value is estimated by 
computing (cf. McKinnon, 2007, Section 2) 

pv̂ =
1

𝐵
∑ 𝐼(𝑇(𝑘) > 𝑇),

𝐵

𝑘=1

 

 
or 
 

pv̂ =
1

𝐵
∑ 𝐼(𝑇𝐿𝑅

(𝑘)
> 𝑇𝐿𝑅),

𝐵

𝑘=1

 

 
where the indicator function 𝐼(. ) takes the value 
1 if the argument is true and the value 0 if the 
argument is false.  Note that in case 𝐻0 is false, the 
test value 𝑇 tends to be large. As the test values 
generated under the true 𝐻0 tend to be small, the 
indicator function tends to take the value 0, so 
that the p-value tends to be small in this case.   

5. Decision step: 𝐻0 is rejected if pv̂ < 𝛼. 
 

 

III. RESULTS 

A. Simulation of the Bootstrap Tests 

Every statistical test is characterized by the 
complementary type-I and type-II error rates, which 
constitute its primary quality measures. On the one 
hand, it is important to know if the specified 
significance level 𝛼 is truly reflected by the actual type-
I error rate for the described bootstrap test. On the 
other hand, it is useful to study the power function of 
that test in order to obtain an impression of its 
sensitivity. Both measures can be estimated via Monte 
Carlo simulation.  

To analyse the empirical type-I and type-II error rates 
for the bootstrap tests developed in Section II, Monte 
Carlo simulations based on 𝑅 = 500 and 𝑅 = 1,000  
samples of 𝑛 = 1,000 observations were carried out. 
For this purpose, firstly white noise samples  

 

      𝒖(1) = [𝑢1
(1)

⋯ 𝑢10,000
(1)

]
𝑇
 

  ⋮             

      𝒖(𝑅) = [𝑢1
(𝑅)

⋯ 𝑢10,000
(𝑅)

]
𝑇
 

 
were generated, on the one hand, using the t-
distribution (4) with parameter values 𝜎 = 0.001 and 
𝜈 = 3, on the other hand using the centred normal 
distribution 𝑁(0, 𝜎2) with the same scaling. Note that 
the vectors are 10 times longer than the actual number 
of observations. The reason for this is to eliminate the 
so-called warm-up effect created by the initial 
conditions (i.e., the zero values for time index values 
𝑡 = 0, −1, …) in the recursive computation of the 
coloured noise samples by means of (3). The last 1,000 
values of the generated coloured noise vectors thus 
truly reflect the characteristics of the AR process. The 
indexes 9,001…10,000 of these 1,000 values are shifted 
by -9,000 in order to obtain the indexing 𝑡 = 1, … , 𝑛 as 
defined for the models (1) – (4). Thus, the generated 
coloured noise vectors are denoted by   
 

𝒆(1) = [𝑒1
(1)

⋯ 𝑒1,000
(1)

]
𝑇
 

             ⋮             

          𝒆(𝑅) = [𝑒1
(𝑅)

⋯ 𝑒1,000
(𝑅)

]
𝑇
 

 
In this simulation study, an AR(1) process with 
parameter value 𝛼1 = 0.6828 was applied. A set of true 
deterministic models was defined to consist of the 
oscillation model (2) with the parameter values 𝑎0 =
0.0016, 𝑎1 = 0.0572, 𝑏1 = −0.0950, 𝑓1 = 16 [Hz] and 
𝜉1 = 𝑖 ∙ 10−9  (𝑖 ∈ {0, … ,51}) for the time instances 
𝑥𝑡 = 67.6813 [s] + (𝑡 − 1) ∙ 0.00512[s]. Adding the 
resulting true observations to the previously generated 
coloured noise vectors gave the observation samples 
 

𝒍(1) = [𝑙1
(1)

⋯ 𝑙1,000
(1)

]
𝑇
 

               ⋮             

          𝒍(𝑅) = [𝑙1
(𝑅)

⋯ 𝑙1,000
(𝑅)

]
𝑇

 

 
under 

 the two MC sample sizes 𝑅 = 500 and 𝑅 =
1,000, 

 the two sample distributions 𝑡3(0, 0.0012) and 
𝑁(0, 0.0012), and 

 the various damping ratio coefficient values 𝜉1 
listed before.  

Note that the case 𝜉1 = 0 (𝑖 = 0) corresponds to the 
simulation of a true 𝐻0, whereas the other non-zero 
values for 𝜉1 (when 𝑖 ∈ {1, … ,51}) are associated with a 
true 𝐻1.  

Three tests were applied to all these observation 
samples at a significance level of 𝛼 = 0.05 under 
various settings:  

1. both the parametric and the nonparametric 

bootstrap test based on the LR statistic 𝑇𝐿𝑅
(𝑘)

 (“BS 

LR-Test”) sampled  𝐵 = 99 and 𝐵 = 999 times, 
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2. both the parametric and the nonparametric 

bootstrap test based on the W statistic 𝑇(𝑘) (“BS 
W-Test”) for 𝐵 = 99 and 𝐵 = 999 times, and 

3. the standard “F-Test” based on the previous W 
statistic with the distributional assumption 
𝑇~𝐹1,995. With this test, the presence of the AR 

process and the non-normality of the white 
noise are ignored, so that the assumed redun-
dancy is 𝑛 − (4𝑀 + 1) = 995 with 𝑀 = 1. 

The odd choice of 99 or 999 bootstrap samples is 
motivated by the requirement of a Monte Carlo test 
that 𝛼(𝐵 + 1) is an integer (cf. McKinnon. 2007). To 
keep the computational burden of the Monte Carlo 
simulations manageable, the parameter 𝜈 was fixed at 
the true value 3 within the GEM algorithm. This yields a 
robust (though not self-tuning) estimator. The choice of 
the low degree of freedom 𝜈 = 3 is also in line with 
certain applications of the Guide to the Expression of 
Uncertainty in Measurement (ISO/IEC, 2008), when the 
observables are explained by input quantities having 
type-A (i.e., statistically determined) standard 
uncertainties (cf. Sommer and Siebert, 2004). For the 
samples generated by means of the normal 
distribution, the GEM algorithm was run with the fixed 
degree of freedom 𝜈 = 120, as this value leads to a 
close approximation of the sampling normal 
distribution 𝑁(0, 0.0012) by the t-distribution 
𝑡120(0, 0.0012) (cf. Koch, 2017).  

Now, counting for each application of a test 
throughout the 𝑅 MC runs the number of times that 𝐻0 
is rejected and dividing that number by 𝑅 yields an 
estimate of the test’s 

1. type-I error rate if 𝐻0 is true (i.e., if the MC 
simulation was carried out with 𝜉1 = 0). 

2. power if 𝐻1 is true (i.e., if the MC simulation was 
carried out with 𝜉1 > 0). 

Table 1 shows that the empirical type-I error rate of the 
F-Test greatly differs from the specified significance 
level 𝛼 = 0.05 in case of Student white noise correlated 
by the AR(1) model. In contrast, the significance level is 
reproduced by the two bootstrap tests rather well 
already for 𝐵 = 99 bootstrap samples. Increasing to  
𝐵 = 999 samples results in a correct second digit of 
type-I error rate. This confirms the finding of McKinnon 
(2007, p.3) that “it might be dangerous to use a value of 
𝐵 less than 999.” Evidently, increasing in addition the 
number of MC runs does not further improve the 
approximation. Furthermore, the results for parametric 
and nonparametric bootstrapping are surprisingly 
similar, in view of their fundamentally different ways of 
generating the white noise series. The former leads to 
slightly closer approximations of 𝛼 than the latter.  
 
 
 
 
 
 

Table 1. Bold numbers: Average rejections of 𝐻0 as 
estimates of the respective test’s type-I error rate. Regarding 
the bootstrap (BS) Wald (W-) and likelihood ratio (LR-) Test, 
the numbers of the first row correspond to nonparametric 
(np), of the second row to parametric (p) bootstrapping.  

R 500 1000 

F-Test 0.006 0.007 

B 99 999 99 999 

BS W-Test: np 
p 

0.044 
0.048 

0.052 
0.052 

0.061 
0.042 

0.053 
0.051 

BS LR-Test: np 
p 

0.044 
0.046 

0.052 
0.052 

0.061 
0.043 

0.054 
0.051 

 

Generating Gaussian white noise without auto-
correlations leads to the power functions shown in Fig. 
1. As the graphs for the parametric and the 
nonparametric bootstrap tests coincide, only the latter 
are displayed. Figure 2 (top) demonstrates that all three 
tests correctly reproduce 𝛼 = 0.05 when 𝐻0 is true (i.e., 
for the vanishing damping ratio coefficient 𝜉1 = 0). For 
most 𝜉1 > 0  the F-Test has slightly larger power than 
the bootstrap tests. As the F-Test is known to be 
uniformly most powerful invariant for linear models, 
the bootstrap tests could be expected to outperform 
the F-Test as the distribution of the F-Test statistic is not 
exact for a nonlinear model, as given by the damped 
harmonic oscillation model (2). Increasing the number 
of Monte Carlo runs or bootstrap samples might 
improve the performance of the bootstrap tests in this 
regard. More importantly, the bootstrap tests clearly 
outperform the F-Test in power when the Student 
distribution and the AR(1) model are used to generate 
the random deviations (see Fig. 2, bottom). The 
bootstrap W- and LR-Test again produce very similar 
results, which is not obvious since the standard Wald 
and likelihood ratio test are known to be equivalent 
mainly for linear models with Gaussian errors.   

 

 
 

Figure 2. Average rejections of 𝐻0 as estimates of the type-I 
error rate (for damping ratio coefficient 𝜉1 = 0) and power 
(for 𝜉1 > 0) for the F-Test (green dots), the bootstrap W-Test 
(dark crosses) and the bootstrap LR-Test (red dots). Top 
subplot: The bootstrap samples are generated with Gaussian 
white noise and without AR model (top subplot), alternatively 
with Student white noise and an AR(1) model (bottom 
subplot). 
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B. Failure of Least Squares Curve Fitting and Visual 
Inspection of Model Plots 

Taking the bootstrap tests as the reference methods 
for detecting a damped oscillation, the performance of 
a simpler testing procedure based on LSE and visual 
inspection of the fitted oscillation model is now 
explored. For this purpose, two different damped 
oscillation models (2) were defined for 100 s of data 
with a sampling rate of 100 Hz using the parameter 
values  𝑎0 = 0, 𝑎1 = 4.0, 𝑏1 = −3.0, 𝑓1 = 5 [Hz] as well 
as the two alternative damping ratio coefficients (i) 

𝜉1 = 1 ∙ 10−6 and (ii) 𝜉1 = 1 ∙ 10−5. Such small values 
were selected because the focus of the current study is 
on the reliable detection of a significant damping. In 
real applications, these levels could be larger, and the 
purpose of the test procedure would then be to test 
whether the damping ratio coefficient differs 
significantly from the permissible level available, e.g., 
from existing ISO standards. Note that the choice of the 
coefficient values 𝑎1 and 𝑏1 corresponds to the 

amplitude 𝐴 =  √𝑎1
2 + 𝑏1

2 = 5.0 and the phase angle 

𝜑 = atan2 (
−𝑏1

𝑎1
) ∙

180

𝜋
= 36.87 [degree]. The true 

observations resulting from this model were added to a 
white noise path generated from a scaled t-distribution 
with parameter values 𝜎 = 0.2 and 𝜈 = 4.  

In order for the LSE based on the linearization of the 
highly non-linear functional model (2) to converge, a 
precise initial value in particular of the frequency should 
be given. It is well known that the determination of 
oscillations with unknown frequencies is a challenging 
task requiring generally global optimization (cf. Mautz, 
2001; Mautz and Petrovic, 2005). In Tables 2 and 3 it can 
be seen that LSE converges for the initial frequency 
value 5.005 [Hz] but diverges for the initial values 5.2 
[Hz] and 5.3 [Hz]. MATLAB’s curve fitting routine fit, 
which was applied using the robust fitting option since 
the simulated t-distribution gives ride to outliers, yields 
estimates similar to LSE for the initial frequency value 
5.005 [Hz]; the estimates of the amplitude, phase angle 
and damping ration coefficients differ greatly from the 
true values for the two larger initial frequency values. 
The unreliable LSE can be improved to some extent by 
decreasing the step size in the computation of the 
parameter update. This Gauss-Newton method is also 
employed within the aforementioned GEM algorithm 
(applied in the estimation step of the bootstrap tests); 
see Alkhatib et al. (2018). The results in Tables 2 – 3 
show that LSE with decreased step size converges for 
the initial frequency values 5.005 [Hz] and 5.2 [Hz], but 
produces strongly distorted estimates for the initial 
value 5.3 [Hz]. In contrast, the GEM algorithm, which 
includes the fitting of an AR error process and of a 
scaled t-distribution, approximates the true solution 
precisely for all three initial values. Although the 
generated observations contain only white noise, AR 
model orders of 1 or 2 were identified through the 
application of the white noise test described in Kargoll 
et al. (2018a). Thus, the parameter estimates by the 

GEM algorithm are not distorted by the additional low-
order AR model estimation. Applying the bootstrap 
tests to the reference solution produced by the GEM 
algorithm results yields the results that the damping 
ratio coefficient 𝜉1 = 1 ∙ 10−6 is not significant (i.e., 𝐻0 

is accepted) whereas 𝜉1 = 1 ∙ 10−5 is significant (i.e., 
𝐻0 is rejected). In the cases where the LSE and the 
Gauss-Newton method both converge they produce 
identical oscillation models (shown in Fig. 3). Clearly, 

the significant damping by 𝜉1 = 1 ∙ 10−5 cannot be 
detected by visual inspection of the corresponding 
model plot (Fig. 3, bottom). It would not help either to 
zoom into a smaller time window since it needs to be 
analysed whether the entire segment analysed is 
damped or not. It may therefore be concluded that the 
employed curve fitting tool and the least squares 
methods, in connection with model plots, are inferior to 
a rigorous hypothesis test for damping such as the 
proposed bootstrap tests. 

 
 

Table 2. Estimated parameters of the damped oscillation 
model with 𝜉1 = 1 ∙ 10−6 by three methods for three 
different initial frequency values. `NaN’ indicates divergence 
of the iterations. 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.0001 

Initial values 5.005 - - 0.0000 

MATLAB-fit  5.0029  5.0029   36.92 0.00012 

LSE 4.9999 5.0008 36.95 0.00008 

Gauss-Newton 4.9999 5.0008 36.95 0.00008 

GEM alg. 4.9999 5.0043 36.92 0.00013 

 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.0001 

Initial values 5.2 - - 0.0000 

MATLAB-fit  5.009  3.9039  -30.80   0.1357 

LSE NaN NaN NaN NaN 

Gauss-Newton 4.9999 5.0008 36.95 0.00008 

GEM alg. 4.9999 5.0043 36.92 0.00013 

 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.0001 

Initial values 5.3 - - 0.0000 

MATLAB-fit  5.028  2.8375  -37.95   0.2623 

LSE NaN NaN NaN NaN 

Gauss-Newton 5.1074 0.0000 -137.27 -1.5645 

GEM alg. 4.9999 5.0043 36.92 0.00013 
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Table 3. Estimated parameters of the damped oscillation 

model with 𝜉1 = 1 ∙ 10−5 by three methods for three 
different initial frequency values. `NaN’ indicates divergence 
of the iterations. 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.001 

Initial values 5.005 - - 0.0000 

MATLAB-fit  5.0000  5.0022   36.90 0.00102 

LSE 4.9999 4.9986 36.91 0.00099 

Gauss-Newton 4.9999 4.9986 36.91 0.00099 

GEM alg. 4.9999 5.0022 36.90 0.0010 

 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.001 

Initial values 5.2 - - 0.0000 

MATLAB-fit  5.013  3.5886  -32.52  0.1412 

LSE NaN NaN NaN NaN 

Gauss-Newton 4.9999 4.9986 36.91 0.00099 

GEM alg. 4.9999 5.0022 36.90 0.0010 

 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.001 

Initial values 5.3 - - 0.0000 

MATLAB-fit  5.028  2.8496  -37.58  0.2608 

LSE NaN NaN NaN NaN 

Gauss-Newton 5.1255 0.0000 -61.15 -1.6032 

GEM alg. 4.9999 5.0022 36.90 0.0010 

 

 
 

 
 

Figure 3. Oscillation time series of simulated acceleration data 
(blue dots) with damping ratio coefficient 𝜉 = 1 ∙ 10−6 (top) 

and 𝜉 = 1 ∙ 10−5 (bottom) and the model computed by 
converged LSE/Gauss-Newton method using the initial 
frequency value 5.005 [Hz]. 

 
C. Controlled Excitation Experiment 

In the context of short-term deformation analysis of 
oscillating structures such as bridges, a geo-sensor 
network of low-cost accelerometers can be utilised for 
an accurate and robust vibration analysis of the 
structure (cf. Neitzel et al., 2012). For this purpose, a 
proper deterministic model needs to be identified to 
truly characterise the global behaviour of a bridge 
structure such as natural frequencies, mode shapes and 
modal damping. Therefore, the time-dependent 
undamped oscillation model (1) considered by Kargoll 
et al. (2018a,b) and Omidalizarandi et al. (2018) is 
extended to the time-dependent damped harmonic 
oscillation model (2). In these previous studies, it was 
demonstrated in particular that the frequencies and 
amplitudes can be estimated robustly and accurately. 
Concerning the amplitudes, which are of great 
importance for a subsequent mode shape analysis, it 
should be noted that their estimation is directly 
influenced by the choice of the deterministic model. In 
the context of structural health monitoring, it is 
desirable to test whether the damping of a structure 
has a certain level or not, since deviations from that 
level would indicate a deterioration of the structure’s 
intactness. As this level is usually non-zero, the 
hypotheses (6) and the test statistics should be adapted 
accordingly.  

As a preparation for such more general testing 
problems, we consider in this contribution the simpler 
case of testing whether an oscillation with a single 
natural frequency is damped or not. For this purpose, a 
controlled excitation experiment was performed at the 
Institute of Concrete Construction of Leibniz University 
Hannover, using a portable shaker vibration calibrator 
(PSVC) 9210D and a low-cost accelerometer. The PSVC 
comes along with a highly accurate reference 
accelerometer of type PCB ICP quartz, which is used for 
the validation. The acceleration data are acquired by 
the low-cost accelerometer of type BNO055 (Bosch 
Sensortec) and reference accelerometer with an 
oscillation frequency of 4 Hz and sampling rates of 
100 Hz and 200 Hz, respectively. For further 
information concerning the experimental setup and the 
used sensors, the reader is referred to Omidalizarandi 
et al. (2018).  

In this section, the hypotheses are one-dimensional 
cases of (6). To analyse damping behaviour throughout 
the measured time series, the low-cost and reference 
acceleration datasets were firstly divided into 45 
segments of consecutive 1000 and 2000 observations, 
respectively (each spanning 10 s). The auto-correlations 
of the accelerometer measurements are modelled by 
means of AR processes, which have previously been 
found to be an adequate class of models for this 
purpose (see, Nassar et al., 2014; Park and Gao, 2008). 
The order of the AR process was assumed to be 𝑝 = 15, 
based on the experience with previous analyses of the 
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datasets (see Kargoll et al., 2018a). Two tests were 
applied to all these observation samples at a 
significance level of 𝛼 = 0.05, based on the LR statistic 

𝑇𝐿𝑅
(𝑘)

 (“BS LR-Test”) and the W statistic 𝑇(𝑘) (“BS W-

Test”). For both tests, nonparametric bootstrapping 
based on 𝐵 = 99 and 𝐵 = 999 times was performed. 
The parameter 𝜈 was fixed at the value 4 within the 
GEM algorithm, reflecting the expectation of a 
moderate number of outliers in the data.  

In view of the setup of the controlled experiment, we 
expected to find no significant damping of the 
oscillation. To verify this, the p-values of both tests 
applied to all segments of the low-cost and reference 
accelerometer sensor data were calculated. The results 
for 99 bootstrap samples were found to be similar to 
those for 999 samples, so that only the former are 
shown in Figs. 4 and 5. It can be seen that all p-values 
are greater than the significance level, so that the 
rejection rate is 0, i.e., 𝐻0 is always accepted, so that 
there is no evidence for significant damping ratio 
coefficients. This finding demonstrates that the PSVC 
device including the reference accelerometer produces 
an oscillation at the specified frequency with no 
significant damping.  
 

 
Figure 4. Low-cost accelerometer: The estimated p-value 
based on the bootstrap W-Test (black solid line) and the 
bootstrap LR-Test (blue cross line) corresponding to 
nonparametric bootstrapping with  𝐵 = 99 samples.  The red 
horizontal line shows the significance level of 𝛼 = 0.05. 

 

 
Figure 5. Reference accelerometer: The estimated p-value 
based on the bootstrap W-Test (black solid line) and the 
bootstrap LR-Test (blue cross line) corresponding to 
nonparametric bootstrapping with  𝐵 = 99 samples. The red 
horizontal line shows the significance level of 𝛼 = 0.05. 

 

IV. CONCLUSIONS AND OUTLOOK 

A comprehensive observation model for a damped 
harmonic oscillation involving multiple frequencies, 
autoregressive random deviations and t-distributed 
white noise components can be adjusted by means of a 
GEM algorithm, which acts as a self-tuning robust 
estimator of all model parameters. Due to the intricacy 

of the model, test statistics in general do not have an 
exact standard distribution. Reasons for this are the 
non-linearity of the functional model (cf. Lehmann and 
Lösler, 2018), the non-normality of the estimator, and 
the non-normality of the random deviations. To test in 
particular whether the damping of an observed 
oscillation is significant or not, two bootstrap tests 
based on the well-known W and LR statistics were 
proposed since small significant damping is generally 
not visible to the eye in a plot of the oscillation model 
fitted by means of standard least-squares estimation or 
MATLAB’s curve fitting tool. The bootstrap tests are 
carried out by means of randomly generated bootstrap 
samples, without resorting to critical values from a test 
distribution. The number of bootstrap samples is 
crucial. To reproduce the significance level of 𝛼 = 0.05 
precisely by the empirical type-I error rate, it is 
recommended to generate at least 999 bootstrap 
samples. Both bootstrap tests have almost identical 
power functions, and it is also irrelevant whether 
parametric or nonparametric bootstrapping is carried 
out. The standard F-Test is slightly more powerful than 
the bootstrap tests when the random deviations are 
normally distributed and uncorrelated. In cases of 
Student and AR errors, however, the F-Test has an 
erratic type-I error rate and visibly reduced power, so 
that the bootstrap tests are clearly preferable in such 
situations. In the future, it is intended to extend the 
model selection procedure to determine whether 
certain sinusoids of within the damped harmonic 
oscillation model are significant or not. Furthermore, 
the test decisions could be contrasted with standard 
information criteria such as the AIC and BIC. The 
bootstrap tests confirmed that oscillations induced by a 
portable shaker vibration calibrator within a controlled 
experiment and observed by means of the reference 
and a low-cost accelerometer are practically 
undamped. The next step will be to adapt the 
procedure such that the damping ratio coefficient(s) 
can be tested against specified values in order to verify 
the structural health of an oscillating structure such as 
a bridge. Such a bootstrap testing procedure can be 
extended and used for a factory calibration of a 
portable shaker vibration calibrator measuring the 
accelerations by means of a reference accelerometer. 
In that case it is desirable to detect changes of all the 
parameters of the damped harmonic oscillation model, 
that is, possibly multiple frequencies, amplitudes and 
damping ratio coefficients simultaneously. In addition, 
the measurements of a low-cost accelerometer 
oscillating in combination with such a shaker can be 
investigated over a long period of time regarding 
aforementioned parameter changes.  
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APPENDIX 

The Jacobi matrix 𝑨 with respect to the damped 
harmonic oscillation model (2) is based on the partial 

derivatives  
𝜕ℎ𝑡(𝜷,𝝃)

𝜕𝑎0
= 0.5 as well as  

 
𝜕ℎ𝑡(𝜷, 𝝃)

𝜕𝑎𝑗

= cos (2𝜋𝑓𝑗√1 − 𝜉𝑗
2 𝑥𝑡), 

 
𝜕ℎ𝑡(𝜷, 𝝃)

𝜕𝑏𝑗

= sin (2𝜋𝑓𝑗√1 − 𝜉𝑗
2 𝑥𝑡) , 

 

𝜕ℎ𝑡(𝜷, 𝝃)

𝜕𝜉𝑗

= [− 𝑎𝑗sin (2𝜋𝑓𝑗[1 − 𝜉𝑗
2]

−
1
2 𝑥𝑡)

+ 𝑏𝑗cos (2𝜋𝑓𝑗[1 − 𝜉𝑗
2]

−
1
2 𝑥𝑡)]

× (−2𝜋𝑓𝑗𝜉𝑗[1 − 𝜉𝑗
2]

−
1
2𝑥𝑡) exp(−2𝜋𝑓𝑗𝜉𝑗𝑥𝑡)

+ [𝑎𝑗cos (2𝜋𝑓𝑗[1 − 𝜉𝑗
2]

−
1
2 𝑥𝑡)

+ 𝑏𝑗sin (2𝜋𝑓𝑗[1 − 𝜉𝑗
2]

−
1
2 𝑥𝑡)]

× exp(−2𝜋𝑓𝑗𝜉𝑗𝑥𝑡) (−2𝜋𝑓𝑗𝑥𝑡) 

 
𝜕ℎ𝑡(𝜷, 𝝃)

𝜕𝑓𝑗

= [− 𝑎𝑗sin (2𝜋𝑓𝑗[1 − 𝜉𝑗
2]

−
1
2 𝑥𝑡)

+ 𝑏𝑗cos (2𝜋𝑓𝑗[1 − 𝜉𝑗
2]

−
1
2 𝑥𝑡)]

× (2𝜋[1 − 𝜉𝑗
2]

−
1
2𝑥𝑡) exp(−2𝜋𝑓𝑗𝜉𝑗𝑥𝑡)

+ [𝑎𝑗cos (2𝜋𝑓𝑗[1 − 𝜉𝑗
2]

−
1
2 𝑥𝑡)

+ 𝑏𝑗sin (2𝜋𝑓𝑗[1 − 𝜉𝑗
2]

−
1
2 𝑥𝑡)]

× exp(−2𝜋𝑓𝑗𝜉𝑗𝑥𝑡) (−2𝜋𝜉𝑗𝑥𝑡) 

 
  


