

ONE YEAR WITH OUR ABSOLUTE GRAVIMETER

Mikael Lilje, Jonas Ågren, Andreas Engfeldt, Per-Anders Olsson

Lantmäteriet, Sweden

One year with our absolute gravimeter - FWW Stockholm, TS 5F, Tuesday 17th June, 2008

- In Sweden, a new generation of reference systems has been introduced.
- Due to post glacial rebound, reference systems need to have an epoch
- To be able to guarantee their sustainability over time, post glacial rebound need to be modelled.
- The post glacial rebound also effect the gravity field of the Earth.
- Repeated gravity measurement can therefore be used for the development of the model.

One year with our absolute gravimeter - FWW Stockholm, TS 5F, Tuesday 17th June, 2008

Why does Lantmäteriet need to determine gravity?

Lantmäteriet are responsible for our national reference systems Three main areas:

- The change in gravity at a location is important information to understand the mechanism behind post glacial rebound
- Geoid determination
- Height determination (e.g. for our new height system RH 2000)

One year with our absolute gravimeter - FWW Stockholm, TS SE Tuesday 17th June, 200

LANTMÄTERIET

Discussion

- Post glacial rebound can be determined with repeated gravity measurement.
- Gravity measurements gives valuable extra information about interior Earth mass changes so that improved models of the geoid changes can be computed.
- The best is to combine various geodetic observations as GNSS, gravity and tide gauges
- Demands on high accuracy => absolute gravity to prefer.

One year with our absolute gravimeter - FWW Stockholm, TS 5F, Tuesday 17th June, 200

LANTMÄTERIET

Absolute gravity measurement

- Gravity is determined relative the physical standards for length and time.
- Today, more or less only "free fall" is used.
- Position and time determined many times of an object falling in vacuum.
- Time determined using an atomic clock and position using a laser with stable wave length.
- Accuracy (1 sigma): ≈ 2 μGal

One year with our absolute grav ${\bf F65}$ WW Stockholm, TS 5F, Tuesday 17th June, 2008

LANTMÄTERIET

Consequences of the investment

- -You need to secure that you have enough personnel who are dedicated, interested and skilful enough
- -Never underestimate the need to work with the instrument. Maintenance is needed both at office, on field and at Micro-g (USA)
- -Important to use opportunities for calibration and comparisons of your instrument
- -Absolute and relative gravity

One year with our absolute gravimeter - FWW Stockholm, TS 5F, Tuesday 17th June, 200

Gravity measurements at Lantmäteriet

Traditionally:

Two LaCoste&Romberg relative gravimeters

Determination of reference systems/frames as our height systems. Important information to understand post glacial rebound.

Since October 2006:

Micro-G LaCoste FG-5 as well as a new Scintrex CG-5 relative gravimeter. We are now able to:

Guarantee enough observations to develop models for post glacial rebound.

Determine gravity change over time as well as the geoid variation over time.

ne year with our absolute gravimeter - FWW Stockholm, TS SE, Tuesday 17th June, 2008

Summary

About 10-15 stations per year

The instrument must be treated carefully. High precision!

Never underestimate the need of

- Dedicated and interested personnel
- Services and Maintenance

One year with our absolute gravimeter - FWW Stockholm, TS 5F, Tuesday 17th June, 2008

