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SUMMARY  
 
Coordinate transformation is an important procedure aims at converting data from one 
reference system to another using a set of control points measured in both systems. Various 
methods can be used to perform this vital procedure, for example: translation, conformal, 
affine, projective, and polynomial transformations.  
 
These methods are different mathematically in the number of parameters that are being used 
in the transformation equations and in the influence that they have on the data. A number of 
quality indicators have been proposed to choose the right method including: the Root Mean 
Squared Error (RMSE) measure, invertability, uniqueness, parsimony, and conformality.  
 
Naturally, more complex transformations with large number of parameters (sometimes with 
high order terms that are not linear) will yield a smaller RMSE but will introduce more 
distortions and deformations into the data.  
 
In order to choose the proper transformation method, an Akaike Information Criterion (AIC) 
type principle is proposed. AIC is a measure of the goodness of fit of a statistical model to a 
certain dataset. This criterion is employing a comprehensive point of view that takes into 
account both the accuracy (e.g., RMSE) as well as the complexity of the transformation 
function (as represented by the number of parameters). The new approach is tested in a real 
case study to demonstrate the implementation of it in choosing the proper transformation 
method between the two coordinates systems in the state of Israel. 
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1. INTRODUCTION 
 
The past decade has seen a renewed interest among surveyors, GIS experts, and remote 
sensing practitioners in coordinate transformation methods. This is mainly due to the 
evolution of the Global Positioning System (GPS) and the need to consolidate legacy data 
measured in an old coordinate system with high-precision GPS-based data (Chen and Hill, 
2005, Schaffrin and Felus, 2008). Coordinate Transformation techniques are essential for the 
creation of a Coordinate Based Cadastre (CBC) where parcel maps and boundary line 
information have to be accurately transformed to a new unified GPS-based coordinate system 
(Felus, 2007). In digital photogrammetry and remote-sensing, transformations are used to 
convert the pixel-based image coordinates into the map-based coordinates (Mikhail et al., 
2001, p. 399). Other examples for the application of coordinate transformations include 
Sprinsky (1987) who utilized an affine transformation to convert digitizer coordinates to map 
or object coordinates, Tsenkov and Gospodinov (2002) who determined 2D-tectonic 
movements using an affine transformation, and Hu (2003) who converted geodetic data from 
state plane coordinates in the North American Datum (NAD) of 1927 to state plane 
coordinates in NAD83. 
 
Coordinate transformation is the mathematical procedure to establish a geometrical 
relationship between a source coordinate system (local or image coordinate system) and a 
target coordinate system (world or object coordinate system). This procedure estimates the 
transformation parameters using a set of control points measured in the two coordinate 
systems. A plethora of transformation models have been developed; these include: surface 
interpolation based, polynomial, projective, affine, conformal, and translation type (e.g., Wolf 
and Ghilani, 1997, pp. 335-356 and Gonzalez-Matesanz et al., 2006). Each method is different 
in the number of parameters that are being used for the transformation and, consequently, will 
have different effects on the coordinates being transformed. 
 
The question of which transformation method is more suitable for a specific project is central 
for the applications mentioned above and has been investigated in the past by a few authors. 
Chen and Hill, 2005 evaluated the performance of three transformation methods for a case 
study in Ireland. The Three transformation methods were the Helmert conformal 
transformation (seven parameters), the polynomial transformation (with 35 parameters); and 
an interpolated grid of ∆x and ∆y (10 kilometers cell resolution created by a 2nd order 
polynomial rubber-sheeting interpolation approach). The evaluation criteria that Chen and 
Hill, 2005 have used included invertability, precision - as measured by the Root Mean 
Squared (RMS) error of the residuals, the maximum residual and the 95% of the available 
residuals-, uniqueness, conformality, and extensibility. The analysis of Chen and Hill, 2005 
considered many aspects of the transformation and concluded that a polynomial model is the 
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best choice; nonetheless, a combined factor that incorporates all these criteria was not 
suggested in that research. Gonzalez-Matesanz et al., 2006 investigated a range of coordinate 
transformation models to convert control points from the ED50 datum to the ETRS89 datum. 
There transformation procedure had two steps: The first step used a simple coordinate 
transformation method (5 parameters, 7 parameters, and a polynomial) and the second step 
utilize an interpolated surface (with Least Squares Collocations, Rubber-Sheeting, Minimum 
Curvature methods) to adjust the data to local distortions. Gonzalez-Matesanz et al., 2006 
used various statistical measures on the residuals and selected the 7 parameter transformation 
followed by the Minimum Curvature interpolation to perform the task with low RMS and 
extensibility. Soycan 2005 tested Two-Dimensional and Three-Dimensional similarity and 
polynomial transformations (12 parameters in 2D and 18 in 3D) and selected the 2D 
polynomial because of its low RMS error.  
 
It seems from the literature review above that the RMS error is a popular indicator for the 
suitability of the transformation method. Nevertheless, the RMS error may not be an ideal 
criterion because a transformation model with a large number of parameters will normally 
yield a smaller RMS error. For example, with six control points, the 2nd degree polynomial 
transformation is unique and will result, theoretically, in a perfect fit (RMSE=0). Nonetheless, 
a transformation model with a large number of parameters is highly sensitive to outliers and 
may incorrectly distort, stretch, or alter the system (Kampmann, 1996). This paper presents 
the Akaike Information Criterion (AIC) type principle as a measure of the goodness of fit of 
the transformation model to a certain dataset.  
 
The rest of the paper is organized as follows: The next section provide basic review about 
coordinate transformation techniques. This is followed by a presentation of AIC criterion and 
new approach to selecting the optimal transformation model. Then, a case study which 
employed the new approach to select the best transformation method for CBC in the south of 
Israel is described. A discussion about the limitations of the presented techniques concludes 
this report. 
 
2. A REVIEW OF COORDINATE TRANSFORMATION PRODCURE 
 
For clarity of discussion, the formulas of the similarity transformation (four-parameter 
transformation) will be reviewed. The transformation equation is given by: 
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      (1) 

 
This transformation employs four physical parameters: s is the scale, β is the rotation, c and d 
are the translations along the X and Y-axes, respectively. XT, and YT are the transformed 
coordinates (target coordinate system) while Xo, and Yo are the original coordinates in the old 
coordinate system. The physical parameters s·cos(β) and s·sin(β) are often replaced by the 
mathematical parameters a and b as presented in the right side of Equation (1). The 
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transformation parameters are computed from a redundant set of n points by using a least-
squares adjustment procedure and the following system:  
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This system forms the classical Gauss-Markov model: 
 

2 1
0;       ( ) 4 2 ; ~ (0, )rank n N σ −⋅ = < ⋅y - e = A ξ A e P          (3)

         
where y is a 2n×1 observation vector; A is a 2n×4 data matrix; ξ is a 4×1 vector of unknown 
parameters; e is a 2n×1 error or noise vector assumed to be normally distributed with zero 
mean; σ0

2 is the a-priori variance component; and P is the 2n×2n weight matrix. 
A standard least-squares adjustment method can be employed to estimate the vector ξ of the 
Gauss-Markov model in (3) and compute the vector of residuals e as follows: 
 

 ˆ T -1 Tξ = (A PA) A Py                               (4) 

 ˆe = y - Aξ%  
 
where the ^ symbol denotes an estimate of a fixed variable and the ~ symbol denotes a 
prediction of a random variable. For simplicity, it is assumed that the observations are 
independent of each other and, therefore, the weight matrix P is a diagonal matrix, namely P 
=Diag(p1, p2,…,p2n). Thus, the normalized weight matrix is defined by:  
 

: (1/ ( ))trace= ⋅P P P               (5) 
 

where the trace operation sums the diagonal elements of the matrix. Finally, the Weighted 
Sum of Squared Residuals (WSSR) is given by: 
 
   :WSSR = ⋅ ⋅T Te P e% %              (6) 
 
The similarity transformation has four parameters as presented by Equations (1) and (2). 
Transformations with a different number of parameters, such as the translation (with two 
translation parameters), affine (with six parameters), projective (with eight parameters), or 
polynomial can be used, as well. Thus, a central question in the analysis of the coordinate 



TS 4C – Geodetic Datum II 
Yaron A. Felus and Moshe Felus 
On Choosing the Right Coordinate Transformation Method 
 
FIG Working Week 2009 
Surveyors Key Role in Accelerated Development 
Eilat, Israel, 3-8 May 2009 

5/10

transformations process is which model to use for making inferences from the data: 
translation, similarity, affine, projective, or polynomial transformations?  
 
3. AKAIKE’S INFORMATION CRITERION 
 
The problem of selecting the “best” transformation model can be solved using the Akaike's 
Information Criterion (AIC) (Akaike, 1974). The AIC replaces previous methods that rely on 
hypotheses testing to select the model that statistically minimizes the “distance” between the 
“true” (i.e., observed data) and the theoretical model. This distance is known as the Kullback–
Leibler divergence. If normally distributed errors are assumed, then the AIC criterion is given 
by: 
 kWSSRnAIC ⋅+⋅= 2)log(:            (7) 
where n is the number of observations, WSSR is the weighted sum of squared residuals 
calculated by Equation (6), and k is the number of parameters. The first term on the right side 
of equation (7) is a measure of lack of model fit, while the second term (i.e., 2·k) can be 
interpreted as a “penalty" for increasing the size of the model (this penalty enforces 
parsimony in the number of parameters). Hence, a good mathematical model is one that has 
the smallest AIC score. 
 
The AIC may perform poorly in small datasets (Burnham and Anderson, 2002). 
Consequently, a refined Akaike information criterion, which we shall denote by AICc, was 
developed for model selection in small datasets, as follows: 

 
 ))1/((2)log(: −−⋅⋅+⋅= knnkWSSRnAICc           (8) 
 
The refined criterion – AICc – should be used when the ratio n/k is small (e.g., < 40).  
 
4. CASE STUDY 

 
An important step in the cadastral data enhancement workflow is a global transformation from 
the old Israeli coordinate system (Cassini-Soldner projection) to the new Israeli coordinate 
system (Transverse Mercator projection). Due to large local distortions, this transformation 
process has to be performed empirically, using national control points with values in both 
systems. 
 
This elegant statistical tool was employed to select the optimal transformation model in 
converting a set of parcel maps (i.e., cadastral blocks 1928, 1957, 1954, 1953) from the old 
Israeli coordinate system to the new one. Four transformation models were tested using 19 
control points in the project area. The results of the experiments are summarized in Table 1. 
These results show that a similarity transformation is the most suitable model for this specific 
area, with the smallest AICc value of -51.891. Note how the weighted sum of squared 
residuals (i.e., WSSR value in Table 1) decreases as the number of parameters in the 
transformation is increased. 
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Table 1. Comparing different transformation models 
 Translation Similarity Affine Projective 

Number of Parameters (k) 2 4 6 8 
WSSR 0.9524 0.544 0.491 0.4519 
AICc -48.103 -51.891 -45.176 -34.323 

 
The refined Akaike information criterion (AICc) may also provide some guidance in 
eliminating substandard information and selecting the optimal set of control points for a 
transformation in a given area. Different methods and techniques have been proposed to 
identify and remove erroneous data and outliers. These methods are often subjective and 
depend on the statistical rejection criteria (cf. Koch,1999 or Baarda, 1968). In this study, we 
employed the AICc as an objective criterion to evaluate the consistency of a dataset. The area 
of Israeli parcel map 1928 which includes nine control points was selected, and a similarity 
transformation was performed in eight experiments as presented in Table 2. In every 
experiment, the point with the largest residual-distance was removed from the list. The 
residuals-distance was calculated using the formula: 2 2(

i i ie x yd e e= + , where 
ixe  and 

iye  are 
the residuals in the X and Y directions of control point i as extracted from vector e%  in equation 
(4). Moreover, in every experiment the following quantities were computed: the 
transformation parameters, residuals and the residual-distance, AICc value, weighted sum of 
squared residuals (WSSR), and the diagonal elements of the Hat matrix which provide an 
indication on the relative influence of every point on the transformation (Kampmann, 1996). 
The Hat matrix – H – is defined by: 
 

⋅ ⋅ ⋅ ⋅ ⋅T -1 TH := A (A P A) A P             (9) 
 
A large diagonal value on the Hat matrix suggests a point with a large influence (leverage 
point), while a small diagonal value suggests an insignificant point. 

 
Table 2. Selecting a consistent set of control points using the AICc. Note that the smallest AICc (-

74.684) was obtained after removing point 40-J from the list 
 

 
Figure 1 presents the spatial configuration of the nine control points, and Table 4 presents the 
residuals, the residual-distance, and the diagonal elements of the Hat matrix in the first 
experiment. Note that new residuals had to be calculated at every experiment. 
 

Experiment 1 2 3 4 5 6 7 8 
No. of points 9 8 7 6 5 4 3 2 
WSSR 0.5445 0.0726 0.0535 0.0404 0.0250 0.0137 0.0073 0 
AICc -51.891 -74.684 -65.487 -54.599 -43.893 -29.605 7.7833 ∞ 
Point 
removed 

- 40-J 44-J 41-J 34-K 59-J 152-G 106-NG 
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Fig. 1. A diagram of control points. Point 1314-R was identified as a leverage point because it has the 
largest diagonal value on the Hat matrix; point 152-G is the least significant point since it has the 
lowest diagonal value on the Hat matrix. 
 
The AICc values in Table 2, suggest that point 40-J should be omitted to create a consistent 
dataset with a low AICc value of -74.68. Note that this point has a low influence on the 
transformation, as being indicated by the Hat matrix (but not the lowest). Moreover, this point 
(40-j) was not identified as an outlier using standard outlier detection tests such as (Baarda, 
1968) (with α = 0.05) or the Chebyshev criterion which excludes points with residuals outside 
the range of (Mean ± 3 × standard deviation). The last two rows in Table 3 provide 
information about the mean and the standard deviation of the residuals. 
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Table 3. The residuals, residual-distance, and the Hat matrix values in the first experiment. Note that 
point 40-j has the largest residual-distance, and point 1314-R has the largest diagonal value of the 
Hat matrix (i.e., a leverage point) 

 
Point 
Name 

Residual X 
(ex) 

Residual Y 
(ey) 

Residual-distance 
2 2(

i i ie x yd e e= +  

Diagonal of the 
 Hat matrix 

152-G -0.154 -0.075 0.171 0.0326 
44-J 0.025 0.030 0.039 0.0924 
45-J -0.138 0.019 0.140 0.1856 
59-J 0.027 -0.053 0.059 0.1236 

106-NG -0.128 -0.023 0.130 0.0657 
34-K 0.035 -0.123 0.128 0.1911 
40-J 0.423 0.472 0.634 0.0362 
41-J -0.112 -0.199 0.229 0.0601 

1314-R 0.022 -0.049 0.053 0.2122 
Mean 0.0001 -0.00011 0.1758 - 

St. Dev. 0.1780 0.1904 0.1823 - 
 

5. CONCLUSIONS AND FURTHER RESEARCH  
 

The refined Akaika Information Criterion (AICc) was used to select the appropriate 
coordinate transformation model. Other criterion, such as the Mallows statistic Cp (Mallows, 
1973), may be used as well. The Mallows statistic is given by: 

 
 2 1ˆ( ) ( ) -  2Cp WRSS n kσ −= ⋅ + ⋅              (10) 
where 2σ̂ is a properly chosen estimate of the posteriori reference variance, n is the number of 
observations, and k is the number of parameters. However, the Mallows statistic Cp was 
criticized as being subjective to the choice of the posteriori reference variance (Akaike, 1974) 
and, therefore, was not used in this research.  
Another important criteria is the Bayes Information Criterion (Schwarz, 1978). 
 

knWSSRnBIC ⋅+⋅= )log()log(:           (11) 
  

Similar to the AIC, the model with the lower value of BIC is the one to be preferred. The BIC 
is an increasing function of RSS and an increasing function of k. Finally the Kashyap's 
criterion (Kashyap, 1982) is a modification of the BIC with additional element added to 
equation (11). Further research is needed to compare the different criteria AIC, BIC and 
Kashyap's and identify the one most suitable in mapping applications.  
 
Applications of the AICc to eliminate erroneous data are still under investigation although the 
initial study which was presented in Table 2 demonstrated how it can be performed. The 
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presented coordinate transformation applications can be improved by using the Total Least-
Squares (TLS) approach with the Error-In-Variables (EIV) model as described in Schaffrin, 
and Felus (2008). The use of a EIV model vs Gauss-Markov model depend on the problem at 
hand and the measured variables.  
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