Towards an automatic road lane mark extraction based on ISODATA segmentation and shadow detection from large-scaled aerial images

Authored by Hang Jin and Yanming Feng
Presented by Yanming Feng
Email: y.feng@qut.edu.au
Queensland University of Technology

Presentation Overview

1. Introduction
 - Future generation vehicle navigation
 - Why lane marks extractions?
 - Existing data sources for lane feature extractions

2. Proposed approach for lane extractions
 - Road surface detection
 - Road lane marking extraction
 - Testing and evaluation

3. Summary
1. Introduction

- Current generation car navigation
 - Road level navigation and positioning
 - 2D or 2.5D road maps
 - Autonomous navigation with standalone GPS
 - Route guidance and location based services

- Next generation vehicle navigation
 - Lane level navigation and positioning
 - Enhanced 2D to real 3D road maps
 - Cooperative navigation with V2V and V2I communications
 - Lane guidance, road safety, intelligent mobility, energy efficiency

Initial Requirements for Selected Features (General Motor studies)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Position Req (m)</th>
<th>Comm Latency (s)</th>
<th>% Market</th>
<th>Max Range (m)</th>
<th>Transmit Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection Collision Warning</td>
<td>0.5 – 1.0</td>
<td>0.1</td>
<td>High</td>
<td>250</td>
<td>Periodic</td>
</tr>
<tr>
<td>Forward Collision Warning</td>
<td>0.5 – 1.0</td>
<td>0.1</td>
<td>High</td>
<td>250</td>
<td>Periodic</td>
</tr>
<tr>
<td>Lane Change Warning</td>
<td>0.5 – 1.0</td>
<td>0.1</td>
<td>High</td>
<td>250</td>
<td>Periodic</td>
</tr>
<tr>
<td>Blind Spot Warning</td>
<td>0.5 – 1.0</td>
<td>0.1</td>
<td>High</td>
<td>250</td>
<td>Periodic</td>
</tr>
<tr>
<td>Emergency Brake Warning</td>
<td>1.0 – 5.0</td>
<td>0.1</td>
<td>Medium</td>
<td>250</td>
<td>Event</td>
</tr>
<tr>
<td>Slow/Stopped Vehicle Advisory</td>
<td>1.0 – 5.0</td>
<td>1.0</td>
<td>Medium</td>
<td>1000</td>
<td>Event</td>
</tr>
<tr>
<td>Road Condition Advisory</td>
<td>1.0 – 5.0</td>
<td>1.0</td>
<td>Medium</td>
<td>1000</td>
<td>Event</td>
</tr>
<tr>
<td>Post Crash Advisory</td>
<td>1.0 – 5.0</td>
<td>1.0</td>
<td>Medium</td>
<td>1000</td>
<td>Event</td>
</tr>
<tr>
<td>Traffic Jam Ahead Advisory</td>
<td>1.0 – 5.0</td>
<td>1.0</td>
<td>Medium</td>
<td>1000</td>
<td>Event</td>
</tr>
<tr>
<td>In-Vehicle Dynamic Signage</td>
<td>> 5.0</td>
<td>5.0</td>
<td>Low</td>
<td>1000</td>
<td>Periodic</td>
</tr>
<tr>
<td>Electronic Toll Payments</td>
<td>> 5.0</td>
<td>10.0</td>
<td>Low</td>
<td>1000</td>
<td>Periodic</td>
</tr>
<tr>
<td>Traveler Information</td>
<td>> 5.0</td>
<td>10.0</td>
<td>Low</td>
<td>1000</td>
<td>Periodic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application Types</th>
<th>Positioning Accuracy</th>
<th>Map Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop Sign Assistant - Warning</td>
<td>~1m</td>
<td>~0.5m</td>
</tr>
<tr>
<td>Curve Speed Assistant - Warning</td>
<td>~1m</td>
<td>~0.5m</td>
</tr>
<tr>
<td>Forward Collision Warning</td>
<td>0.3-1m</td>
<td>0.2-0.5m</td>
</tr>
<tr>
<td>Curve Speed Assistant - Control</td>
<td>0.3-1m</td>
<td>0.2-0.5m</td>
</tr>
<tr>
<td>Lane Departure Warning</td>
<td><0.3m</td>
<td><0.2m</td>
</tr>
</tbody>
</table>
Generation of enhanced digital maps

- Mobile Mapping Systems
 - Mature technologies, collect all the road information
 - High resolution, medium to high costs
- Mobile Laser Mapping
 - A novel 3D mapping system to scan roads, buildings and trees from a moving vehicle
- LiDAR image processing
 - High resolution, high costs
 - Automatic lane extraction from aerial images
 - High resolution possible, low to medium costs
 - Suitable for lane extraction over regional and remote areas
2. Proposed method for lane feature extractions

- Image preprocessing
 - Geometrical correction
 - Contrast stretching
- Road surface detection
 - Image segmentation
 - Shadow process
 - Shadow detection
 - Shadow compensation
- Road lane marks detection
- Tests and evaluation
Image preprocessing

- Problems of raw aerial image
 1. Geometric distortions
 - Variations of the sensor platform
 - Relief displacement
 2. Low image quality
 - Contrast deficiency

- Solutions
 1. Image geometric correction
 - Commercial photogrammetry software, e.g. ERDAS, LPS
 2. Image contrast stretching
 - Histogram equalization

Road surface detection (1)

- Road surface detection
 - Aim to successfully detect the road centrelines
 - Need to distinguish road surface from vegetations
 - Select C_r channel in YCrCb color space to distinguish road surface from vegetations
 - Thanks to relative low value of blue component in RGB
 - Use ISODATA method to segment the image
 - To classify road surface from other ground objects
 - Use linear regression to smooth the road sides
Road surface detection (2)

- **Shadow detection**
 - Road surface affected by shadows casted by trees or vehicles on the road
 - Cause information and features loss

- **Spectral ratio technique:**
 - based on \(\frac{Cr+1}{(Y+1)} \) ratio image, shadow regions have relatively large digital numbers (DN)

- **Image segmentation**
 - based on homogeneity histogram, taking into account not only the color information but also the spatial relations
 - Employ Gaussian filter to smooth the histogram
Road surface detection (3)

- Shadow compensation
 - Recover the shadow areas using the mean and standard deviation of both shadow and non-shadow regions

\[I' = m_c + \frac{I - m_s}{\sigma_s} \sigma_c \]

where \(I \) is the DN before shadow compensation, \(I' \) is the de-shadowed DN, \(m_s \) and \(\sigma_s \) are the mean and standard deviation of the shadow region, \(m_c \) and \(\sigma_c \) are the mean and standard deviation of the non-shadow areas, respectively.
Road lane markings detection (1)

- Road lane marking characteristics:
 - Shape and size are constricted to standards
 - Constitute high contrasted objects (generally asphalt, white lane marking)

Geometric specifications of the pavement markings in a rural arterial road environment (Queensland Department of Main Roads, 2001).
Road lane markings detection (2)

- **Marking extraction process**
 - 1st PCA is selected to reduce calculation
 - Using co-occurrence contrast to enhance the lane markings

\[
 f = \sum_{n=0}^{N} n^2 \left(\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) \right)
\]

where \(p(i,j) \) is \(i \)th entry in a normalized gray-tone spatial-dependence matrix, \(N \) is the number of distinct gray levels in the quantized image, and \(|i-j| = n \).

- Image binarized by histogram thresholding
- Thinning and vectorization

Experiment: Lane marking detection

- **upper**: non-shadow region
- **bottom**: shadow region
- **left**: co-occurrence contrast image
- **middle**: extracted road lane marks
- **right**: final road model
Evaluation of Results

Data set:
Aerial image set with spatial resolution of 0.1m, with RGB colour bands, located in Gympie, Queensland

Testing
6 testing areas are selected covering 2 km², and quantitative evaluation is conducted in terms of completeness, correctness, and quality.

The overall completeness rate is 83.7%, correctness is 91.5%, and quality 76.6%

Summary

- High accuracy road maps are important for road safety applications:
 - Moving from road level to lane level navigation
 - Automatic driver assisted systems
 - Tendency to cooperative navigation and positioning
- One of the effective road map generation techniques is to extract the lane level information from the high resolution aerial images
Summary (2)

- The proposed method combined detection of road surface and lane marking
- We presented a shadow detection and compensation method
- Experimental results from a test area in Gympie showing:
 - Completeness: 83.7%
 - Correctness: 91.5%
 - Quality: 76.6%
 - Reasonably effective, but further work required
- Requirements:
 - High spatial resolution is required
 - Distinct contrast between road marking and pavement

Thank you for your attention! Questions?