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SUMMARY  
 
A standard reference in uncertainty modeling is the "Guide to the Expression of Uncertainty 
in Measurement (GUM)". GUM groups the occurring uncertain quantities into "Type A" and 
"Type B". Uncertainties of "Type A" are determined with the classical statistical methods, 
while "Type B" is subject to other uncertainties which are obtained by experience and 
knowledge about an instrument or a measurement process. Both types of uncertainty can have 
random and systematic error components. In many cases, the uncertainty of output quantities 
may computed by assuming that the distribution represented by the result of measurement and 
its associated standard uncertainty is a normal distribution. This assumption may be 
unjustified and the uncertainty of the output quantities so determined may be incorrect. 
 
One tool to deal with different distribution functions of the input parameters and the resulting 
mixed-distribution of the output quantities given through the Monte Carlo techniques. The 
resulting empirical distribution can be used to approximate the theoretical distribution of the 
output quantities. All required moments of different orders (expectation values, variances and 
covariances, skewness and kurtosis) can then be numerically determined. In order to assess 
and to validate the simulation results, real observed data would be processed and analyzed. 
Based on the derived higher order moments of the real observed data, the parameter of the 
probability distribution of the output quantities will be derived. The consideration of higher 
order moments is necessary due to the violation of the normal distribution assumption of the 
measurements and derived output quantities.  
 
To evaluate the procedure of derivation and evaluation of output parameter uncertainties 
outlined in this paper, a case study of kinematic terrestrial laserscanning (k-TLS) will be 
discussed. This study deals with two main topics: the refined simulation of different 
configurations by taking different input parameters with diverse probability functions for the 
uncertainty model into account, and the statistical analysis of the real data in order to improve 
the physical observation models in case of k-TLS. The solution of both problems is essential 
for the highly sensitive and physically meaningful application of k-TLS techniques for 
monitoring of, e. g., large structures such as bridges.   
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1. INTRODUCTION 
 
The main tasks of an engineer include design, produce, and test of structures, devices, and 
processes. These tasks will be involved with mathematical and physical modeling of the 
different phenomena. In the constructed mathematical/physical model some information about 
constants, parameters, and functional variables are needed. The uncertainties will be come 
into his modeling together with these values. The sources of uncertainties come from the data 
or the measurements, statistical evaluation of the model and from the model.  
 
The “Guide to the Expression of Uncertainty in Measurement (GUM)” is the standard 
reference in uncertainty modelling in engineering and mathematical science, cf. (ISO, 1995). 
GUM groups the occurring uncertain quantities into “Type A” and “Type B”. Uncertainties of 
“Type A” are determined with the classical statistical methods, while “Type B” is subject to 
other uncertainties like experience with and knowledge about an instrument. Whereas the 
uncertainties of the uncertain quantities of “Type A” can be estimated based on the 
measurement itself, the estimated uncertainties of the uncertain quantities of “Type B” are 
based on expert knowledge, e.g., the technical knowledge about an instrumental error source. 
 
The Extension of GUM (ISO 2007) recommends the propagation of uncertainties using a 
probabilistic approach. Within the mentioned approach the propagation of uncertainties is 
numerically treated by Monte Carlo (MC) techniques. The difference between the GUM (ISO 
1995) and the extension of GUM (ISO 2007) in case of nonlinearity and/or Non-Gaussianity 
will be not significantly differ in the first and the second central moments but rather in the 
estimate of the confidence region, which are reflected in the non-Gaussian PDF of the output 
quantities. The acceptance of MC techniques has significantly increased during the last 
decade. Consequently, it’s widely used within many scientific disciplines. Hennes (2007) 
suggested to use MC simulations instead of the treatment of the combined uncertainties by 
applying the LOP. Siebert and Sommer (2004) recommended a MC based method to evaluate 
the measurement  uncertainties  in  non-linear  models.  Koch (2008a)  suggested  the  
determination  of  the  uncertainty according to GUM by a Bayesian confidence interval  
using  MC  simulation.  The  approach  has been explained in detail and applied to the results 
of terrestrial   lasescanning   (TLS).   Furthermore,  the approach  has  been  extended  in  
Koch  (2008b)  to evaluate uncertainties of correlated measurements by another application in 
TLS. 
 
The paper is organized as follows: First we will describe the general idea of Monte Carlo 
techniques to describe measurement uncertainties in the context of GUM. The application 
example to kinematic TLS is given and discussed in the following sections.  
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2. UNCERTAINTY MODELLING WITH MONTE CARLO TECHNIQUES 
 
In Monte Carlo (MC) techniques, both, the random and the systematic components of the 
uncertainty are treated as having a random nature. Please note that not the systematic 
component itself is modelled as random, it is the knowledge about the systematic component 
for which a probability distribution is introduced (Koch, 2007). 
 
The GUM suggested in some cases to select the probability distribution function (pdf) of the 
input quantities as rectangular, triangular, and trapezoidal (ISO, 1995). In these cases, it is 
hard/impossible to obtain the estimate of the uncertainty for the output quantity in a closed 
mathematical form. An alternative to modelling and propagating uncertainties is propagating 
distributions by MC simulations of the observation model from Eq. (1): 
  

1 2( , ,..., ) ( )ny f p p p f  p . (1)

Here y  represents a random output quantity and 1 2, ,..., np p p  are the n random inputs. 

 
2.1 Monte Carlo Approach to Evaluate Uncertainty 
The MC techniques are of great importance for uncertainty evaluation. With a set of generated 
samples the distribution function for the value of the output quantity y in (1) will be nume-
rically approximated. In general, the functional relations between the basic influence 
parameters, refer to (1), the observations and the parameters of interest are non-linear, and the 
normal distribution is not the adequate probability density function. In such as case, Monte-
Carlo simulation is a suitable way to approximately derive the stochastic properties of the 
quantities of interest (output quantities). It is assumed that the functional model is completely 
formulated relating the output quantities with the input quantities – the observations and the 
basic influence parameters, respectively. It is further assumed that the probability densities of 
the considered input quantities are a priori known. Then, a sample vector of the input 
quantities can be drawn repeatedly using random number generators. Random numbers are 
generated on a computer by means of deterministic procedures. In particular, rectangular 
distributed random numbers are generated, which may then in turn be transformed into 
random numbers of random variables having other distributions, for instance, into numbers of 
a normally distributed random variable (Gentel, 2003).  

For each input sample vector the corresponding values of the output quantities are calculated 
by using the corresponding functional relation. The set of output sample vectors yields an 
empirical distribution which can be used to approximate the correct random distribution of the 
output quantities. All required measures (expectation values, variances and covariances) as 
well as higher order central moments such as skewness and kurtosis can then be derived.  
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To sum up, MC approaches to estimate the uncertainty include the following steps: 
Step 1: A set of random samples, which have the size n , is generated from the (pdf) for each 
random input quantity 1 2, ,..., np p p . The sampling procedure is repeated M  times for every 

input quantity.   

Step 2: The output quantities Y  will be then calculated by: 
( ) ( ) ( ) ( )
1 2( , ,..., ) ( )i i i i

ny f p p p f (i) p , (2)

with the 1....i M  generated samples of Y , we obtain an estimate of the pdf for Y . 
Step 3: Particularly relevant estimates of any statistical quantities can be calculated: 

1) The expectation of the output quantity:  

  ( )

1

1ˆ ( )
M

i

i

E y f
M 

  p                (3)                     

2) The estimate of the variance of the output quantity (Alkhatib, 2007): 

2 ( ) ( )

1

1 ˆ ˆˆ ( ( ) ( ( )))( ( ) ( ( )))
M

i i T
y

i

f E f f E f
M 

    p p p p   (4) 

3) The confidence interval , [ , ]conf MCy y y  of the estimate of the output quantity with 

the significance level of  . To compute the confidence interval by MC simulation, 
one has to order the independent samples y  from the smallest to largest, an 
approximate 100 (1- 2 )%   for the random variable y  is given by (Buckland, 
1983):  

, [ , ],conf MC j ky y y y y    where ( 1)j M    and ( 1)(1 )k M   .  (5) 

Figure 3 shows a diagram with the main steps of uncertainty modeling with a different 
treatment of the random and systematic uncertainties. 
 
In Koch (2008a) and Koch (2008b) the above mentioned Monte-Carlo algorithm in case of 
TLS uncertainty assessment have been discussed. Alkhatib et al. (2009) apply it to k-TLS 
vertical profile scans and they combine it with a deterministic approach based on fuzzy sets. 
Here, only Monte-Carlo techniques will be considered but it is extended to the discussion of 
the properties of the derived time series and of their validation using real k-TLS observation 
data. 
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Fig. 1: Treatment of uncertainty components in Monte Carlo approach. 
 
3. APPLICATION OF THE MONTE CARLO-APPROACH TO K-TLS 
 
3.1 Object and Setup 
In this section a short numerical example for the approach, presented in Section 2, is shown. 
The aim of the application is to detect the vertical displacements of a bridge under load, e.g., 
due to car traffic or train crossings. For this reason, a laserscanner of type Zoller+Fröhlich 
Imager 5006 scanner was placed beneath the bridge which is located in the southern part of 
Germany. Paffenholz et al. (2008) give a detailed description of the bridge, of the loading 
tests with different trucks, of the applied observation procedures and of the derived data; see 
Fig. 2 for a graphical representation of the object and the location of the laser scanner. The 
horizontal section in along-track direction of the bridge (y-axis) considered here had a length 
of 20 m with a shortest distance between scanner and bridge of about 9.5 m. Vennegeerts et 
al. (2010) show new analysis results of the k-TLS observations. Moreover, they compare 
these results with strain gauge observations and with numerical simulations based on finite-
element models. Note that the consistency of all three kinds of data is better than 1 mm. Here, 
the unloaded state of the Autobahn bridge is studied which was repeatedly observed in order 
to get a reference geometry for the analysis of the load-induced deformations. For the 
observation of the vertical profiles a repetition rate of 12.5 profiles per second was used while 
the repetition frequency of the distance measurements was 500 kHz. For the vertical angle this 
yields an increment of 10 mgon. There are 7216 points per epoch within the observed section; 
500 profiles representing the unloaded state were considered in total. 
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Fig. 2: Bridge and scanner 
 
3.2 SIMULATION OF K-TLS PROFILES 

 
The functional model, which was used in Alkhatib et al. (2009), has been established for the 
simulations. The time series of the vertical height z  of every point of e bridge can be 
expressed in the local coordinate system of the laserscanner by the following equation:  
 
 ( ) 0z cos ,d z z z z= × = + D  (6) 
 
with d the observed distance between laser scanner and object point which induces a constant 
and a distance-proportional effect, the observed zenith angle  with a constant angular effect, 
and zD  the discretization term which is induced by the angular increment of the vertical 
servo-motor. In this study seven uncertainty components were modeled: 

 Uncertainty of the distance (p1 , Type A), and their additional constant (p2 , Type B) 
 Distance depending term for the uncertainty of the distance measurement (p3, Type B) 
 Incidence angle of the measured distance under the bridge (p4, Type B) 
 Uncertainty of the zenith angle (p5 , Type A) and the vertical index error (p6, Type B) 
 Vertical resolution for the zenith angle (the step width of the motor) (p7 , Type B) 

The uncertainties and the power density function (pdf) for the input quantities ip  are given in 

Tab. 1. 
 

Input 
quantity ip  

Error 
component 

Power density 
function 

PDF Type 

1p  random ( )
1 1

2
1 ,p pp N m s:  normal 

2p  systematic ( )2 2 2,l up T p p:  triangular 

3p  random ( )
3 3

2
3 ,p pp N m s:  normal 

4p  random ( )
4 4

2
4 ,p pp N m s:  normal 

5p  random ( )
5 5

2
5 ,p pp N m s:  normal 

6p  systematic ( )6 6 6,l up T p p:  triangular 

7p  systematic ( )7 7 7,l up U p p:  uniform 

Table 1: Uncertainties for the input quantities P   
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The symbols m and 2s  in Tab. 1 denote the expectation value and the variance of the random 
variable, respectively; the uniform and the triangular distribution are defined by the lower 
bound ilp  and the upper bound iup  of the interval with positive values of the density 

function. The assumptions for the uncertainties of 1p , 5p  and 6p  are based on the technical 

data from the manufacturer and for the uncertainties of 2p , 3p  and 4p  on (Schulz and 

Ingensand, 2004) and for 7p  on (Reshetyuk, 2006). 

 
In the following, the results of three different Monte-Carlo simulation runs are shown and dis-
cussed which were calculated for the bridge section described in Section 3.1. In all 
simulations 500 samples were drawn for each random quantity; the obtained values were 
processed according to the model described in Eq. (1). Afterwards, the data processing 
strategy for generating k-TLS time. Three different class widths were selected for the 
simulations: one / five / ten observation values per class and epoch. As representative value 
for each class and epoch the respective arithmetic mean of the single class values was used; 
this is reasonable because of the yet small class widths. Thus, only a minor spatial filtering 
was applied but not a temporal filter. The temporal sequences of these representative class 
values define the time series or data series, respectively, which are analyzed further. 
 
Due to the unloaded state of the bridge all these time series can be considered as stationary. 
Therefore three central moments of the underlying probability density functions are 
determined empirically: standard deviation (of the single value), skewness and kurtosis. Note 
that expectation value and standard deviation are necessary and sufficient in order to uniquely 
define a normal distribution. The skewness of a normally distributed random variable equals 
0, and the kurtosis equals 3 (NB: In order to refer the kurtosis of an arbitrary density to the 
normal distribution the value 3 can be subtracted; then the kurtosis of the normal distribution 
equals 0). Hence, skewness and kurtosis are well-suited to detect violations of the normal 
distribution assumption. 
 
Simulation I: For this simulation, the three input quantities ( 1p , 3p  and 5p ) were considered 

for uncertainty modeling: the constant and distance-proportional effect of the distance 
observation, and the constant angular effect of the zenith angle observation. The input 
quantities for Simulation I are defined in the left three columns of Table 2. The three central 
moments of the empirical distributions of the respective representative class values obtained 
as results of the Simulation I are presented in Fig. 3.  
 
Simulation II: For the second simulation the same input quantities were used as in the first 
simulation; in addition, the uncertainty induced by the angular increment of the vertical servo-
motor ( 7p ) was modeled. The three central moments of the empirical distributions derived as 

results of the Simulation I are presented in Fig. 4.  
 
Simulation III: For the last simulation all  input quantities given in Tab. 2 were used; the 
result is shown in Fig. 5. 



TS04E - Laser Scanners, 5143 
Hamza Alkhatib and Hansjörg Kutterer 
Towards an advanced estimation of Measurement Uncertainty using Monte-Carlo Methods- case study 
kinematic TLS Observation Process 
 
FIG Working Week 2011 
Bridging the Gap between Cultures 
Marrakech, Morocco, 18-22 May 2011 

8/13

Table 2: Monte-Carlo simulation: input quantities for the uncertainty models (type of proba-
bility densities and numerical values of the standard deviations) 
 

Simulation I: without vertical increment 

 

Simulation II: with vertical increment 
Input 

quantity 
Density type 

Num. value 
(std. dev.) 

Input 
quantity 

Density type 
Num. value 
(std. dev.) 

1p  Normal 0.5 mm 1p  Normal 0.3 mm 

3p  Normal 30 ppm 3p  Normal 30 ppm 

5p  Normal 10 mgon 5p  Normal 5 mgon 

   7p  Rectangular 20 mgon 
 

Simulation III: with all input quantities 
Input 

quantity 
Density type 

Num. value 
(std. dev.) 

1p  Normal 0.5 mm 

2p  Triangular 0.4 mm 

3p  Normal 30 ppm 

4p  Normal 1 mm 

5p  Normal 10 mgon 

6p  Triangular 8 mgon 

7p  Uniform 10 mgon 

 
Looking at the standard deviations shown in Fig. 3 and Fig. 4, the distance-proportional effect 
on the standard deviations of the representative profile points is obvious. Moreover, the 
square-root law x x n   for the standard deviation of the mean value x  with respect to 

the standard deviation of the single values by the number n of sample values can clearly be 
seen. In addition, the skewness is insignificant in both simulations. The difference lies in the 
kurtosis. Whereas in Fig. 3 the normal distribution assumption seems to hold, it is clearly 
violated in Fig. 4. The Assumption of a Gaussian distribution in Fig. 5 is not obvious. 
Therefore, the rigorous mathematical assessment of the discussion about this assumption has 
to be referred to suitable hypothesis tests. For this purpose the Kolmogorov-Smirnov-Test 
(KS-Test) is used. The KS-Test is a form of minimum distance estimation used to compare a 
data set with a reference probability distribution. The test quantifies a distance between the 
empirical distribution function of the data set and the cumulative distribution function of the 
reference distribution. By modifying the KS-Test it can serve as a goodness of fit test. In the 
case of testing for normality of the distribution, the samples are standardized and compared 
with a standard normal distribution. As a result of the performed hypothesis, we were able to 
approve that only in Simulation I the normal distribution is hold.   
Due to the convolution different probability distributions – normal, triangular and uniform, 
respectively – the resulting distributions of In Simulation II and III are not normal 
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distribution; this can be validated by means of the KS-Test. Moreover (especially for 
Simulation II), the kurtosis values decrease from 3 (which is valid for observations directly in 
vertical direction and which does not contradict to the normal distribution assumption) to 
about 2 in a horizontal distance of about 20 m. There are two effects which superpose each 
other: one from the uniform distribution and the other from the (non-linear) cosine function. 
In case of increasing the class width, the effect on the kurtosis is significantly mitigated – 
possibly due to the central limit theorem of probability theory. 
 

 
 
Fig. 3: Simulation I – without vertical motor increment uncertainty: analysis of the simulated 
k-TLS profiles for three different class widths – standard deviations, skewness, and kurtosis 

 
Fig. 4: Simulation II – with vertical motor increment uncertainty: analysis of the simulated  k-
TLS profiles for three different class widths – standard deviations, skewness, and kurtosis 
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Fig. 5: Simulation III – with all input quantities listed in Tab. 1: analysis of the simulated  k-
TLS profiles for three different class widths – standard deviations, skewness, and kurtosis 
 
4. VALIDATION OF THE SIMULATION RESULTS 
 
In order to assess and to validate the simulation results, actually observed profile data were 
processed and analyzed as well in full accordance with the procedure applied for the two si-
mulation runs. Fig. 5 shows the obtained results; like in Section 5 the standard deviations, the 
skewness and the kurtosis of the individual classes of height coordinates are given. The stan-
dard deviations show again a clear dependence on the horizontal distance between the scanner 
and the profile points; this dependence is reduced when the class width is increased. However, 
in contrast to the simulated data, the mentioned square-root law does not fully apply – neither 
for small values of the y-coordinate nor for large values. For small values the reduction of the 
variance induced by averaging is smaller than expected, for large value the reduction effect is 
larger than expected. 
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Fig. 5: Real data: analysis of the observed k-TLS profiles for three different class widths – 
standard deviations, skewness, and kurtosis  
 
Like in the simulations, the skewness of the empirical distributions of the individual classes 
does not significantly differ from 0; note that the visible variability of the values decreases 
when y increases. Hence, the empirical distributions are symmetric – independent of the class 
width. However, the decrease of the kurtosis with respect to increasing values of y is remark-
able. On the one hand, there is a systematic and significant decrease of the values from 3 
(what is expected in case of normal distribution) to a value slightly below 2. This indicates 
clearly the violation of the normal distribution assumption. On the other hand however, this 
effect is mitigated in case of wider classes. Both effects were also obtained in Simulation II 
shown in Fig. 4 by modeling of a uniformly distributed uncertainty component for the angular 
increment of the vertical servo-motor. Note that the visible variability of the values decreases 
when y increases. 
 
Obviously, the real-data results fit quite well to the results of Simulation II which could be 
obtained using a rather basic uncertainty model with a few input parameters only. In addition 
to the simulations there are some further effects in the real data which could not be modeled 
up to now. Looking, e. g., at the subfigures of Fig. 5 in total, some regions of horizontal 
distances y can be identified where the values of the central moments are obviously disturbed. 
This holds in particular for the standard deviations like, e. g., between 16 m and 17 m; there 
are also some periodic characteristics. A following study is required which aims at a refined 
statistical modeling and analysis of the k-TLS profile time series. 
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5. CONCLUSIONS 
 
In this paper the 2D case of kinematic TLS was studied where repeated profile scans are ob-
served from a fixed station with a high repetition frequency for monitoring purposes. The fo-
cus was put on a refined modeling of the uncertainty of both the observations and the derived 
positions of the profile points. In order to take into account the complete data processing 
chain, the strategy for generating and analyzing time series was considered which is presently 
used at GIH. Monte-Carlo simulation techniques were applied to provide numerical results for 
discussion and validation. It turned out that a rather small number of input parameters for the 
uncertainty model are required to obtain simulation results which fit quite well to actually 
observed data. These real data were observed on the occasion of loading tests at an Autobahn 
bridge in southern Germany. 
 
Further work has to address two main topics: the more refined simulation of more complex 
configurations by taking more parameters for the uncertainty model into account, and the ri-
gorous and thorough statistical analysis of the real data in order to improve the physical ob-
servation models in case of k-TLS. The solution of both problems is essential for the highly 
sensitive and physically meaningful application of k-TLS techniques for monitoring of, e. g., 
large structures such as bridges.   
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