

INTRODUCTION

The geoid surface serves as a reference for most applications that require a datum for determining topographic heights or ocean depths.

The increasing use of GPS techniques require the precise determination of local geoids, aiming at replacing the geometric levelling with GPS measurements.

TS07C - Geoid and GNSS Heighting

INTRODUCTION The objective of this study is to evaluate a back propagation artificial neural network (BPANN) for modelling local GPS/Levelling geoid undulations as an alternative method to the traditional interpolation methods.

TS07C - Geoid and GNSS Heighting

BACK PROPAGATION BPANN has been more widely applied in engineering among all other ANN

BPANN with one hidden layer using a sigmoid activation function can approximate any continuous function given a sufficient number of hidden neurons.

TS07C - Geoid and GNSS Heighting

applications.

BACK PROPAGATIONBPANN training procedure corresponds
to an adjustment of the weights
between the hidden layer and
the output layer for several thousand
iterations.The mean square error (MSE) is used
as a network performance indicator.
$$MSE = \sum_{i=1}^{K} (y_i^{actual} - y_i^{estimated})^2 / K^2$$

TS07C - Geoid and GNSS Heighting

FIG Working Week 2011 Bridging the Gap between Cultures Marrakech, Morocco, 18-22 May 2011

COMPARATIVE STUDY

The surface models of the study area are generated by reference points on the basis of the selected interpolation methods.

From these constructed models, the geoid undulation differences of reference and test points are computed.

15

TS07C - Geoid and GNSS Heighting

FIG Working Week 2011 Bridging the Gap between Cultures Marrakech, Morocco, 18-22 May 2011

	С	OMP	ARA	TIV	'E S'	TUD	У
			INT	TERPOLA	TION		
	Children of the	KRIG	INDW	MSHP	RBAF	LPOL	POLYNOMIAL
R E F	Min (m)	-0.0528	-0.0427	-0.0381	-0.0389	-0.0485	-0.0410
	Max (m)	0.0559	0.0447	0.0464	0.0443	0.0337	0.0397
	Mean (m)	-0.0009	-0.0004	0.0034	0.0024	-0.0067	0.0023
	RMSE (m)	0.0388	0.0244	0.0242	0.0239	0.0245	0.0236
			INT	TERPOLA	TION		1400
	- Carterio	KRIG	INDW	MSHP	RBAF	LPOL	POLYNOMIA
I E S T	Min (m)	-0.0431	-0.0427	-0.0424	-0.0435	-0.0516	-0.0466
	Max (m)	0.0967	0.0450	0.0415	0.0402	0.0312	0.0470
	Mean (m)	0.0195	0.0077	0.0099	0.0089	-0.0001	-0.0020
	RMSE (m)	0.0489	0.0269	0.0266	0.0261	0.0246	0.0243
		and and					

COM	DADA	TTVE	CTI	IDV
COM	PARA	ITAC	210	107

		TERATI	ON NUN	ABERS	Barl S	-59/20
Star Ol	50000	100000	150000	200000	250000	300000
Min (m)	-0.0427	-0.0389	-0.0383	-0.0417	-0.0368	-0.0468
Max (m)	0.0447	0.0443	0.0427	0.0372	0.0403	0.0287
Mean (m)	-0.0004	0.0024	0.0026	-0.0010	0.0033	-0.0063
MSE (m)	0.0004	0.0004	0.0004	0.0004	0.0003	0.0004
RMSE (m)	0.0204	0.0199	0.0196	0.0191	0.0185	0.0190
		ITERATI		ABERS		5-2-5-1
1 her all	50000	10000	150000	200000	250000	300000
Min (m)	-0.0427	-0.0435	-0.0430	-0.0459	-0.0416	-0.0499
Max (m)	0.0450	0.0402	0.0411	0.0376	0.0426	0.0324
Mean (m)	0.0077	0.0089	0.0094	0.0060	0.0010	0.0015
RMSE (m)	0.0229	0.0221	0.0222	0.0211	0.0202	0.0204

FIG Working Week 2011 Bridging the Gap between Cultures Marrakech, Morocco, 18-22 May 2011

CONCLUSIONS The data are not assumed to have distribution applying normal when BPANN to geodetic problems. method performs easy BPANN and flexible modelling with decreased and increased number of reference points when generating a local GPS/Levelling geoid. TS07C - Geoid and GNSS Heighting 23

