

DETERMINING TEMPERATURE DEPENDENCE OF COLLIMATION ERROR OF DIGITAL LEVEL LEICA DNA 03

Jelena GUČEVIĆ, Siniša DELČEV, Vukan OGRIZOVIĆ

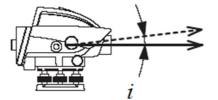
Metrological Laboratory for Angle and Length Calibration, ML160

1

Content

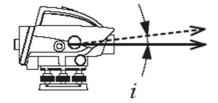
- 1. BASIC CHARACTERISTICS OF THE LEICA DNA 03
- 2. THEORETICAL POSTULATES
- 3. EXPERIMENT
- 4. CONCLUSION

3


1. BASIC CHARACTERISTICS OF THE LEICA DNA 03

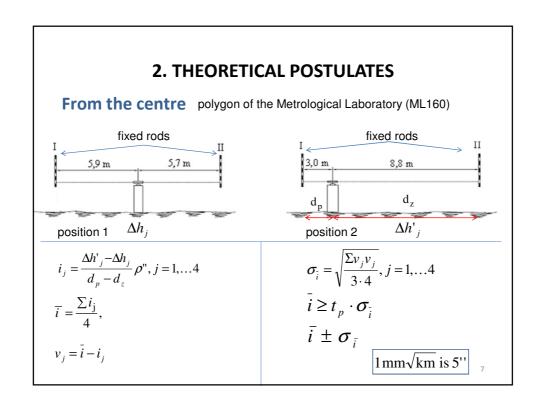
The technical characteristics of the level DNA-03

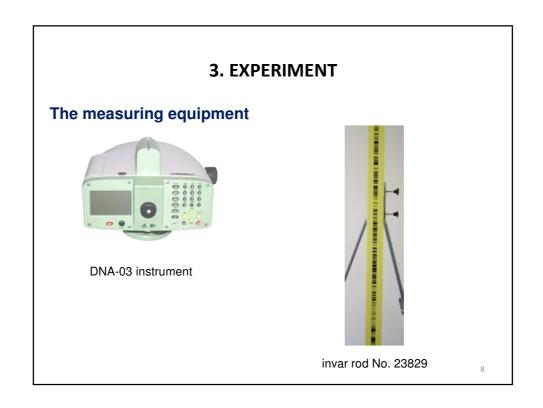
Electronic measurements:	
with Invar staffs	0.3 mm
with standard staffs	1.0 mm
Optical measurements	2.0 mm
Distance measurement	(electr.) 1 cm/20 m (500 ppm)
(standard deviation)	
Range:	
Electronic measurement	1.8 m – 110 m
Optical measurement	from 0.6 m
Electronic measurement:	
Resolution height	0.01 mm
measurement	
Time for single measurement	Typically 3 seconds
Telescope magnification	24x
Compensator:	
Type	Pendulum compensator with magnetic
	damping
Slope range	10'
Compensator setting accuracy	0.3"
Environmental conditions:	
Working temperature	-20 C to +50 C
Storage temperature	-40 C to +70 C
Humidity	95%, non condensing
	4


2. THEORETICAL POSTULATES

- From the centre
- Kukkamäki
- Förstner
- Näbauer

5

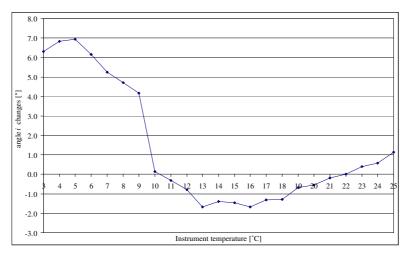

2. THEORETICAL POSTULATES



- From the centre
- Kukkamäki
- Förstner
- Näbauer

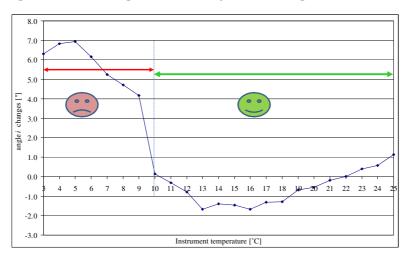
6

3. EXPERIMENT


- •10 measurements were carried out for each degree of temperature cooling in the range of 3°C to 25°C
- •the results of the measurements are free from gross errors
- •the calculation of the angle "i" was carried out for each reading

$$i" = \frac{\overline{X}_{t=j^{\circ}} - \overline{X}_{t=h^{\circ}}}{d} \cdot \rho"$$

- $\overline{X}_{_{t=\,i^{\circ}}}$ is the reading at the temperature, j=3°C,... 25°C
- $\overline{X}_{{\scriptscriptstyle t=h^{\circ}}}$ is the reading at the temperature of **22°C**
- d is horizontal length from the instrument to the rod.


3. EXPERIMENT

The diagram of the change, for the temperature range from 3°C to 25°C.

3. EXPERIMENT

The diagram of the change, for the temperature range from 3°C to 25°C.

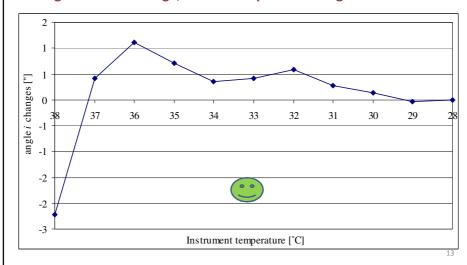
3. EXPERIMENT

•10 measurements were carried out for each degree of temperature **heating** in the range of **38°C to 28°C**

•the results of the measurements are free from gross errors

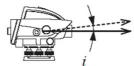
•the calculation of the angle "i" was carried out for each reading

$$i" = \frac{\overline{X}_{t=j^{\circ}} - \overline{X}_{t=h^{\circ}}}{d} \cdot \rho"$$


 $\overline{X}_{t=i^{\circ}}$ is the reading at the temperature, j=38°C,... 28°C

 $\overline{X}_{{\scriptscriptstyle l=h^{\circ}}}$ is the reading at the temperature of **28°C**

d is horizontal length from the instrument to the rod.


3. EXPERIMENT

The diagram of the change, for the temperature range from 38°C to 28°C.

4. CONCLUSION

- •Leica DNA 03 level is the instrument of modern design that largely facilitates the work of geodetic professionals.
- •The change of the collimation error ranging from $+10^{\circ}$ C to $+40^{\circ}$ C is not significant.
- •At the temperatures under +10°C there are significant changes of the collimation error *i* and their values should be considered.
- •While working at low temperatures (up to -20°C), the value of the collimation error should be specially determined so that corrections could be entered into the measurement results.

The technical characteristics of the level DNA-03

Environmental conditions:	
Working temperature	-20 C to +50 C
Storage temperature	-40 C to +70 C
Humidity	95%, non condensing

Thank you all for listening!

Jelena GUČEVIĆ, Siniša DELČEV, Vukan OGRIZOVIĆ

15