

Introduction

EARTH : complex system; siege of temporal variations

SPACE GEODESY : science which uses measurements of the artificial satellites which turn around the earth to determine the shape of the earth and its changes in time :

- ➔ Gravity field
- → Geoid (mean sea level)
- ➔ Orientation of the Earth
- → Deformation of the earth's crust
 → ...

Introduction

Techniques of space geodesy : VLBI, SLR, GPS, DORIS

VLBI

Measures evolution

of the phase of the

incidental wave (even

radiosource) between

two radio telescopes.

intervals required for

pulses emitted by a

Laser transmitter

(station) to a satellite.

Measures satellite- receiver distance deduced from the time between emission and reception. DORIS Measures Doppler effect.

FIG Working Week 2011, Marrakech, Morocco, 18-22 May

Introduction

The richness and the great quantity of the measurements collected by these systems (VLBI, SLR, GPS and DORIS) Allows today to represent the displacement of the stations in the form of time series of coordinates which require the development of the adequate methods of analysis for a better exploitation.

FIG Working Week 2011 Bridging the Gap between Cultures Marrakech, Morocco, 18-22 May 2011

Time series

Time Series :

Sequence of numerical observations X_t measured at successive times t (t = 1..., N; N : length of the series)

$X_t = m_t + s_t + \varepsilon_t$

m_t: *Trend* (long-term evolution of the time series)

st : Cyclical component (seasonal components)

 $\boldsymbol{\epsilon}_{t}$: **Residual component** (noise affecting the time series)

Noise signal separation (De-Noising) **De-Noising steps 1.** Choose a wavelet and compute the wavelet coefficients **WT** at level j of the signal **2.** Determination of the threshold λ (VisuShrink [Donoho and Johnstone, 1994]) $\hat{\sigma} = \frac{1425}{0.6745}$ Med $\lambda = \hat{\sigma} \sqrt{2 \log(N)}$ σ^2 is the noise variance, N is the length of the series and Med is the median of the absolute values of the first level of decomposition. **3.** Thresholding of the wavelet coefficients WT - λ if WT $\geq \lambda$ $Hard\ thresholding:\ T_{\lambda}^{Hard}(\mathrm{W}T) = \begin{cases} \mathrm{W}\ if\ \left|\mathrm{W}T\right| > \lambda \end{cases}$ Soft thresholding: $T_{\lambda}^{\text{soft}}(WT) = \begin{cases} WT + \lambda \text{ if } WT \leq -\lambda \end{cases}$ 0 if $|WT| \le \lambda$ if $|WT| \leq \lambda$ 4. Reconstruct the signal from the threshold wavelet coefficients FIG Working Week 2011, Marrakech, Morocco, 18-22 May

		Da	ta	Us	ed			
Time series o	of week	ly coordin	ate residu	als of	(16) GI	PS stations provided		
AIUB Anal	ysis cer	ntre "COD	E" of the	IGS us	sing BE	RNESE Software.		
Deferred to 1		00 and as	nrassad	in tha l		odatic rafarance fro		
(dN - Ne th			T Vantia	111 uie 1	local ge	Succe reference fra		
(din : North,	dE : East and dH : Vertical)							
	Acronym	Site	Country	Lat, deg	Long, deg	Data span		
	EISL	Easter Island	Chile	-27.02	-109.38	1996.1-2003.8		
	FAIR	Fairbanks	United-states	64.97	-147.52	1996.1-2006		
	GODE	Greenblet	United-states	38.9	-76.8	1996.1-2006		
	HRAO	Hartebeesthoek	South Africa	-25.88	27.70	1996.8-2006		
	METS	Metsahovi	Finland	60.2	24.7	1996.1-2006		
	NKLG	Libreville	Gabon	0.3	9.7	2000.3-2006		
	NOUM	Noumea	France	-22.3	166.4	1998.2-2006		
	NYA1	Ny-Alesund	Norway	78.9	11.9	1998.3-2006		
	REYK	Reykjavik	Island	64.2	-22.0	1996.1-2006		
	RIOG	Rio Grande	Argentina	-53.8	-67.8	1997.7-2006		
	SANT	Santiago	Chile	-33.2	-70.7	1996.1-2006		
	STJO	St John's	Canada	47.6	-52.7	1996.1-2006		
	SYOG	Syowa	Antarctica	-69.00	39.58	1999.4-2006		
	THT	Papeete	France	-17.58	-149.62	1998.5-2006		
	IHII	rapeete						
	TLSE	Toulouse	France	43.6	1.0	2001.2-2006		

Results and analysis

		North (mm)		East (mm)		Vertical (mm)	
	Station	Annual signal	Semi annual signal	Annual signal	Semi annual signal	Annual signal	Semi annua signal
	EISL	4.2	4.5	1.5	2.7	8.9	7.1
	FAIR	1.8	2.3	3.2	2.4	5.6	4.9
Amplitudes of appual and	GODE	1.9	1.7	2.4	1.1	4.6	4.9
Amplitudes of annual and	HRAO	3.1	2.2	1.4	2.1	5.6	4.6
semi-annual signals in	METS	0.8	1.3	1.4	1.5	4.0	4.8
North East and Vertical	NKLG	1.2	1.9	1.3	1.8	4.7	4.1
torui, Last and vertical	NOUM	3.3	3.7	0.8	2.1	8.5	5.3
components of studied	NYA1	1.3	1.0	1.7	1.0	3.9	5.2
position stations.	REYK	3.2	1.5	1.3	1.2	6.9	4.5
	RIOG	2.1	2.4	2.3	2.1	4.5	5.9
	SANT	3.3	2.7	2.6	3.1	6.4	6.7
	STJO	1.4	1.7	1.6	2.0	3.8	3.8
	SYOG	0.9	1.4	0.9	1.3	2.3	3.9
	THTI	3.5	2.5	1.6	1.4	3.8	4.6
	TLSE	0.6	0.9	1.9	1.1	2.4	3.1
	USNO	2.1	1.2	1.7	1.8	3.3	4.5

 \Rightarrow The annual and semi annual signals have the largest amplitude in the Vertical component which is in the range of 3-7 mm compared to 1-3 mm in the horizontal components.

Results and analysis

Station	North [mm]			East [mm]			Vertical [mm]		
	MIN	MAX	STD	MIN	MAX	STD	MIN	MAX	STD
EISL	-9.2	10.0	2.9	-5.1	5.5	1.8	-17.7	17.2	6.1
FAIR	-4.1	3.7	1.3	-3.9	4.2	1.3	-15.2	10.9	3.8
GODE	-3.2	4.2	1.1	-3.9	3.9	1.1	-9.0	12.3	3.2
HRAO	-5.2	6.0	1.7	-4.1	4.7	1.3	-14.6	10.5	3.5
METS	-2.7	3.5	1.0	-4.0	4.3	1.1	-9.0	11.4	3.4
NKLG	-4.3	3.3	1.3	-2.8	2.1	0.9	-16.8	8.2	3.3
NOUM	-6.7	8.0	2.1	-5.0	5.3	1.4	-12.1	12.4	4.1
NYA1	-2.9	2.2	0.8	-3.2	3.5	0.9	-12.3	10.9	3.8
REYK	-3.6	3.7	1.1	-3.8	3.4	1.1	-9.8	9.8	3.2
RIOG	-4.4	4.9	1.6	-5.4	6.8	1.7	-13.7	14.2	4.0
SANT	-5.7	5.4	1.8	-5.2	4.5	1.5	-14.0	10.6	3.5
STJO	-4.1	4.5	1.3	-4.1	4.4	1.1	-12.7	8.1	2.9
THTI	-7.7	8.9	2.2	-4.5	4.1	1.2	-11.7	17.9	4.3
USNO	-3.2	3.1	1.0	-3.2	2.3	1.0	-7.7	10.8	3.1
TLSE	-1.9	1.9	0.6	-1.8	2.0	0.6	-4.8	5.6	2.1
SYOG	-4.0	3.3	1.1	-3.6	3.3	1.2	-11.3	10.8	3.5

⇒The standard deviation (STD) of the noise in the horizontal (North and East) and the Vertical components ranges between 1-2 mm and 2-5 mm, respectively.

⇒The noise level in the Vertical direction is more important compared to the horizontal one.

FIG Working Week 2011, Marrakech, Morocco, 18-22 May

Conclusion

The main purpose of this work is to apply the wavelet transform into the analysis of GPS coordinate time series, in order to assess the "noise" which allows to investigate the stability of the stations and on those the "signal" which allows to determine the systematic signals such as trends and seasonal components.

The application of the wavelet transform on weekly solutions of coordinate residuals of 16 well distributed stations, permits to better assess their nonlinear trend and their annual and semi annual signals, and behaves well in the simultaneous identification of the fluctuations contained in the studied time series which are related to parasitic phenomena of observational, instrumental or geophysical origin.

Using the VisuShrink thresholding, based on the mean square error minimization, the obtained results show that the noise level is higher in the Vertical component; it is in the range of 2-5 mm compared to the horizontal components (North and East) which is in the range of 1-2 mm.

