

Prerequisites

- A photogrammetric technique
- 3D monitoring of a great number of points with high accuracy (up to 1mm or better)
- Simplicity of the technique
- On line or almost on line calculation of the results

Proposed procedure (1/4)

- low cost method
- automate image correlation for monitoring of presigned points on the surface of a loaded concrete beam in 3 dimensions
- geodetic measurements before the beginning of the loading test
 - acquisition of image stereo-pairs during the loading phase
- system of 2 calibrated and synchronized digital
 - automated measuring process
 - sought accuracy better than 1mm

Proposed procedure (3/4)

i. measurements

- pair of calibrated and synchronized digital cameras
- placement of reflective targets (as control points)
- placement of targets (for automatic image recognition)
- geodetic measurements of the control points

ii. data acquisition in the test field

- acquisition of an image stereo-pair at load-free state
- acquisition of the image stereo-pairs at each epoch
- verification stage

Proposed procedure (4/4)

iii data processino

- recording of the synchronised image frames
- image processing (if required)
- calculation of the object coordinates of the control points
- manual measurement of the image coordinates of control points (0-epoch)
- photogrammetric resection (0-epoch)
- automatic localisation and automatic measurements of image coordinates of the monitoring points (every loading epoch)
- photogrammetric intersection
- calculation of the displacements of each point in three dimensions

Automatic detection (1/2)

Stage 1: Approximate detection

Normalized 2D Cross Correlation

- the template lays on every possible position on the image
- the correlation factor is calculated for every position
- the final position of the template is that where the correlation factor has the maximum value

facilitation of the procedure..

- the image is transformed into a binary raster.
- a statistical criterion is calculated repetitively until the minimum value is acquired (most appropriate threshold value)
- the tone mean is calculated for every blob and the template
- the normalized correlation factor is recalculated for both the template and the image
- the approximate image coordinates are defined

Automatic detection (2/2)

Stage 2: Precise detection

Adaptive Least Squares Matching

- import of specific parameters
 - template size, maximum shift, maximum rotation, maximum number of iterations, color correction (optional), template image, image for the adjustment, center image coordinates on the template, approximate values
- every time the template is detected on the research window, the execution is interrupted
- the image is resampled using bilinear interpolation
- image coordinates are calculated

Automatic detection Every time the template is detected on the research window... the execution is interrupted the precise positions of the template are calculated with sub pixel accuracy On – screen diagrams Figure 7: convergery of the affine parameter. The figure 8: convergery of the affine parameter.

Data processing & results (4/4)

Photogrammetric Intersection

- calculation of the 3D object coordinates of all points to be monitored
- every epoch
- the accuracy of the determined coordinates varies from point to point, (better than 1mm in general)

Verification stage & construction of diagrams for 3D displacements of points

Conclusions

- ✓ simple and low cost technique
- calculation of displacements in 3 dimensions
- ✓ accuracies better than 1mm in the object space

Recommendations

- > use of large format synchronized cameras
- frames with pre-signed points of known coordinates
- use of appropriate coded targets for the points to be monitored
- better lighting conditions
- > use of multi-patch correlation
- incorporation of additional geometrical constraints

Thank you for your attention...