

Detection of geomorphological changes

- Efficient monitoring means
 - Global scale analysis
 - General assessement of the total change
 - General measures volume, area, etc.
 - Detailed scale analysis
 - Monitoring the reshaping process
- Understanding underlying mechanisms

Global scale analysis Difference Map

 DEM subtraction for global for general assessement of the total change

$$Diff\left(i,j\right) = DEM_{epoch1}(i,j) - DEM_{epoch2}(i,j)$$

- Detection limit:
- $m_{diff} = \sqrt{2} m_z$
- m_z accuracy estimate of the laser scanning data.

Global scale analysis Difference Map

 DEM subtraction for global for general assessement of the total change

$$Diff(i, j) = DEM_{epoch1}(i, j) - DEM_{epoch2}(i, j)$$

- Advantage
 - Efficient and simple computation.
- Disadvantage
 - Partial description of the evolving phenomena.
 - Difficulty describing non-vertical changes.
 - Difficulty detecting detailed changes.

Detailed analysis • Focusing on the area of interest • Detecting the phenomenon in the dataset • Phenomenon description (geometrical) • Change quantification

Characterization of geomorphic features

- Focusing on the area of interest detecting the phenomenon and characterizing it
- principal curvature analysis

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^2 Z}{\partial x^2} & \frac{\partial^2 Z}{\partial x \partial y} \\ \frac{\partial^2 Z}{\partial x \partial y} & \frac{\partial^2 Z}{\partial y^2} \end{pmatrix}$$

Eigenvalue analysis for feature detection

Mapping and Geo-Information - Technion Israel Institute of Technolog

Multi-scale feature detection

- Variety of feature forms and sizes in the dataset
- Common fixed-kernel fixed-threshold detection practices may lead to loss of information
- Multi-scale analysis searching for a "significant" response

Thalweg detection

Eigenvalues accuracy

$$m_{\lambda_{\text{max,min}}} = \pm \frac{\sqrt{6}}{d^2} m_Z$$

hypothesis test for point characterization

$$\lambda_{\max} > z_{1-\alpha} \cdot m_{\lambda} + \frac{2\Delta Z}{d^2} \text{ and } |\lambda_{\min}| \le z_{1-\frac{\alpha}{2}} \cdot m_{\lambda}$$
 (for gullies)

z - normalized Gaussian distribution.

Gully banks detection

 Using steep ascent along the profile crossing the channels up to the fan surface level

$$|DEM_{i+1} - DEM_i| < k$$

- k threshold
- *i* thalweg point
- i+1 perpendicular point to thalweg direction

Results • Two airborne laser-scanning campaigns have been carried out along the Dead Sea coastal plains – first conducted in Nov., 2005. – second in Oct., 2011. • Analyzing the total change and local processes

Conclusion Analysis of the development of gullies and collapse sinkhole fields reveals: Fossil areas Rapidly changing areas Vital for planning future development of the region. Applicable in regions around the globe facing geomorphic changes.

