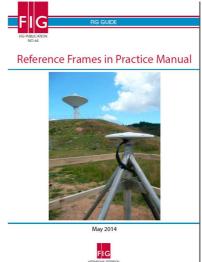
Reference Frames in Practice Manual

Graeme Blick Chief Geodesist gblick@linz.govt.nz

Background

Seminars on Reference Frames in Practice

- 2012 FIG working week Rome [20],
- 2013 SE Asian Survey Congress Manila [40],
- 2013 FIG/UN-GGIM-AP Pacific Smalls Developing States Symposium Fiji [20].
- Manual addresses technical issues surrounding reference frames
- Provides a brief introduction to the use of Reference Frames in Practice.
- This presentation gives an overview of the Manual



Contents

FORWARD

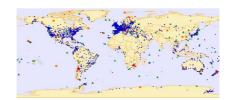
- 1. Introduction
- 2. Geodesy and Global Reference Frames
- 3. Global Terrestrial Reference Systems and Frames
- 4. Regional and National Reference Frames
- 5. Height Systems
- 6. Transforming Between Datums
- 7. Transforming Between Datums in Non-static Reference Frames
- 8. Reference Frame Parameter Estimation and Testing via the technique of **Least Squares**
- 9. Testing Measurements and Least Squares Parameter Estimates
- 10. Global Navigation Satellite Systems
- 11. GNSS CORS Networks and Linking to ITRF
- 12. The International GNSS Service (IGS)
- 13. Standards and Traceability of Terrestrial Reference Frames

XXV International Federation of Surveyors Congress, Kuala Lumnur Malavsia 16 - 21 June

1. Introduction

Graeme Blick, Land Information New Zealand, New Zealand qblick@linz.govt.nz

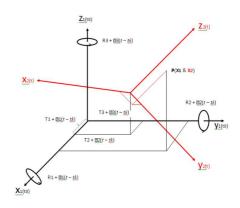
- Addresses technical issues surrounding reference frames
- · It is arranged as a series of short fact sheets
- Provide a brief introduction to the use of Reference Frames in Practice.
- It is intended for surveyors.
- It contains a number of technical terms and lists references where additional information may be found.



2. Geodesy and Global Reference Frames

Chris Rizos, University of New South Wales, Australia c.rizos@unsw.edu.au

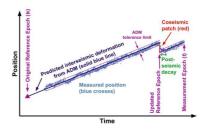
- This section gives an overview of the science of geodesy and use of global reference frames.
 - Surveyors increasingly use satellite positioning systems that provide position in terms of global reference frames.
 - Important for surveyors to understand these reference frames and how they relate to local reference frames.


XXV International Federation of Surveyors Congress, Kuala Lumpur Malaysia 16 – 21 June

3. Global Terrestrial Reference Systems and Frames

Neil D. Weston and Tomás Soler, National Geodetic Survey, NOAA, USA neil.d.weston@noaa.gov

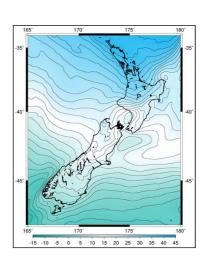
- This section provides knowledge of global terrestrial reference systems and frames and transformations between them.
 - It is often necessary to transform between different global reference frames.



4. Regional and National Reference Frames

Richard Stanaway, Australia richard.stanaway@quickclose.com.au

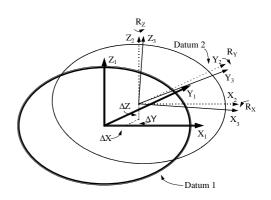
- This section provides information for the surveyor on the different types of reference frames and datums and how crustal deformation can be accommodated in them.
 - Surveyors often make measurements in terms of regional or national reference frames.
 - We need to be concerned with accommodating the effects of crustal deformation in our datums.


XXV International Federation of Surveyors Congress, Kuala Lumpur Malaysia 16 – 21 June

5. Height Systems

Daniel R. Roman, National Geodetic Survey, NOAA, USA dan.roman@noaa.gov

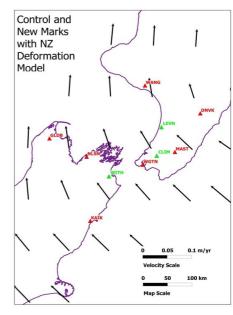
- This section describes the various height systems and how heights can be transformed between these systems.
 - Traditionally the surveyor is interested in determining heights in terms of sea level.
 - Satellite positioning systems determine heights relative to the ellipsoid



6. Transforming Between Datums

Graeme Blick and Chris Crook, Land Information New Zealand gblick@linz.govt.nz

- This section provides information on the commonly used transformation methods and some of the more specific cases
 - The surveyor is often required to transform data between different datums.


XXV International Federation of Surveyors Congress, Kuala Lumpur Malaysia 16 – 21 June

7. Transforming Between Datums in Non-static Reference Frames

Nic Donnelly, Land Information New Zealand ndonnelly@linz.govt.nz

- This section details the specific case for transforming between these non static reference frames.
 - Surveyors are increasingly working in non-static reference frames, reference frames that account for the effects of crustal movements.

8. Reference Frame Parameter Estimation and Testing via the technique of Least Squares

Roger Fraser, Geodetic Survey, Victoria, Australia roger.fraser@dtpli.vic.gov.au

- This section focuses on the propagation of an international or regional reference frame onto national or local stations.
 - When making a set of measurements the surveyor will often be required to test the accuracy of those measurements and identify any outliers or errors.
 - This is most commonly carried out using the method of Least Squares.

$$\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{V}_m^{-1} \mathbf{A})^{-1} \mathbf{A}^T \mathbf{V}_m^{-1} \mathbf{m}$$

$$\mathbf{V}_{\hat{\mathbf{x}}} = (\mathbf{A}^T \mathbf{V}_m^{-1} \mathbf{A})^{-1}$$

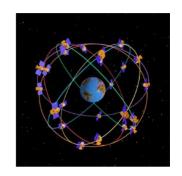
XXV International Federation of Surveyors Congress, Kuala Lumpur Malaysia 16 – 21 June

9. Testing Measurements and Least Squares Parameter Estimates

Roger Fraser, Geodetic Survey, Victoria, Australia roger.fraser@dtpli.vic.gov.au

- The section on Reference Frame
 Parameter Estimation and Testing via
 the technique of Least Squares gave a
 general overview of the topic.
- This section briefly reviews some basic concepts and techniques for the testing of geodetic measurements and least squares parameter estimates, and for estimating network reliability.

$$\tau = \frac{\sigma_m}{\sigma_v} = \frac{\sigma_m}{\sqrt{\sigma_m^2 - \sigma_a^2}}$$



10. Global Navigation Satellite Systems

Chris Rizos, University of New South Wales, Australia c.rizos@unsw.edu.au

- This section provides an overview of the various systems available and methods of making measurements.
 - Increasingly surveyors are using satellite based positioning systems to make their survey measurements.
 - A number of systems are now fully or partially operational and several regional augmentation systems are being developed.

XXV International Federation of Surveyors Congress, Kuala Lumpur Malaysia 16 – 21 June

11. GNSS CORS Networks and Linking to ITRF

Rob Sarib, Office of the Surveyor General, Northern Territory, Australia, robert.sarib@nt.gov.au
Mikael Lilje, Geodesy Department Lantmäteriet Sweden, mikael.lilje@lm.se

- This section details how to link information from a CORS to global reference frames.
 - More and more countries are building networks of CORS.
 - These provide services to the surveyor that can increase the efficiency
 - Real time positions may be generated in terms of local or global reference frames if required.

12. The International GNSS Service (IGS)

Nic Donnelly, Land Information New Zealand, New Zealand ndonnelly@linz.govt.nz

- This section details the structure of the IGS and services provided by them.
 - Many of the commercially available GNSS software packages have options which enable the surveyor to download and utilize the IGS data and products in their processing.
 - This enables the generation of precise coordinates aligned to the latest version of ITRF

XXV International Federation of Surveyors Congress, Kuala Lumpur Malaysia 16 – 21 June

13. Standards and Traceability of Terrestrial Reference Frames

David Martin, European Synchrotron Radiation Facility, France martin@esrf.fr

- Surveyors as professionals must fulfill certain legal, regulatory and/or accuracy requirements for their clients.
- Using internationally recognized standards such as the ISO series and ensuring traceability in measurement are two internationally and widely accepted ways of doing this.

Recovery from a natural disaster

XXV International Federation of Surveyors Congress, Kuala Lumpur Malaysia 16 – 21 June

