
The STDM Development: Srategic Choices and Design Features, (7248)
John Gitau, Solomon Njogu and Danilo Antonio (Kenya)

FIG Congress 2014
Engaging the Challenges – Enhancing the Relevance
Kuala Lumpur, Malaysia 16-21 June 2014

1/17
The

The STDM Development: Strategic Choices and Design Features

Danilo ANTONIO, John GITAU and Solomon NJOGU, Kenya

Key words: STDM, Security of Tenure, GLTN, GIS, Open Source Software

SUMMARY

Recent developments in Information and Communication Technology (ICT) have had a
positive impact on the establishment of land administration and cadastral systems and
geospatial data infrastructures (GSDI). These developments such as database
management systems (DBMS), information system modeling standard UML (Unified
Modeling Language), free and open source software (FOSS), positioning systems and
emerging powerful computers and networking have greatly improved the quality, cost
effectiveness and performance of land administration and recording systems (Lemmen
and van Oosterom, 2002). However, there still exists a critical gap in the development of
appropriate tools and approaches in providing tenure security to the majority of the
people including the modeling of people-land relationships independently from the level
of formalization, or legality of these relationships.

This paper describes the strategic design choices and processes in the development of the
Social Tenure Domain Model (STDM), a pro-poor land information system that supports
the continuum of land rights approach. STDM provides a land information management
framework that integrates formal, informal and customary land systems, as well as the
corresponding administrative and spatial components. By doing so, the model describes
relationships between people and land in an unconventional manner, and as such it has
the power to tackle land administration needs in communities, such as people in informal
settlements and customary areas.

In particular, the paper highlights the development and implementation of STDM version
0.9.5 tool, which has been specifically customized to address land information
requirements of the urban poor in the context of undertaking settlement upgrading
initiatives.

	

The STDM Development: Srategic Choices and Design Features, (7248)
John Gitau, Solomon Njogu and Danilo Antonio (Kenya)

FIG Congress 2014
Engaging the Challenges – Enhancing the Relevance
Kuala Lumpur, Malaysia 16-21 June 2014

2/17
The

The STDM Development: Strategic Choices and Design Features

Danilo ANTONIO, John GITAU and Solomon NJOGU, Kenya

1. BACKGROUND

Most developing countries have less than 30 percent cadastral coverage; this means that
over 70 percent of the land in many countries is generally outside the land register
(Lemmen, Augustinus, Haile and van Oosterom, 2009). This has caused enormous
problems for example in cities, where over one billion people live in slums without
proper water, sanitation, community facilities, security of tenure or quality of life. This
has also caused problems for countries with regard to food security and rural land
management issues.

The Global Land Tool Network (GLTN), facilitated by UN-Habitat, has taken up this
challenge. GLTN partners has taken the lead in the development of the Social Tenure
Domain Model (STDM), to address the identified technical gaps associated with securing
tenure of urban and rural poor, amongst others.

STDM is meant specifically for developing countries where there is very little cadastral
coverage in urban areas with slums, in rural customary areas or in complex situations like
post crisis context areas. The focus of STDM is on all relationships between people and
land, independently from the level of formalization, or legality of those relationships.
This principle makes the STDM tool to be more flexible for other applications and
contexts.

The development of STDM can be summarized in three distinct perspectives, these are:

- STDM as a concept - It provides a standard for representing flexible ‘people-land’
relationships. These relationships can be expressed in terms of persons (or groups
of persons) having ‘social tenure relationships’ to spatial units, where a spatial
unit can represent a parcel of land, building or a given natural resource such as a
river or forest. Figure 1 represents the conceptual model of STDM.

- STDM as a model – It is a specialization of the ISO-approved Land
Administration Domain Model (LADM) (ISO, 2012). Specialization means that
there are some differences, which are mostly in the terminology and application
area. Any form of right, responsibility or restriction in a formal system is
considered as a social tenure relationship in STDM. Please see Table 1 for further
explanation on the comparison between LADM and STDM.

- STDM as an information tool – This represents the implementation of the model
as a software package that enables the recordation and visualization of the
‘people-land’ relationships and other information.

The STDM Development: Srategic Choices and Design Features, (7248)
John Gitau, Solomon Njogu and Danilo Antonio (Kenya)

FIG Congress 2014
Engaging the Challenges – Enhancing the Relevance
Kuala Lumpur, Malaysia 16-21 June 2014

3/17
The

	

Figure 1: STDM Conceptual Model

	

LADM Class
Name

Corresponding Class
Name in STDM

Description

Party Similar name This is a person or organization that plays a
role in a rights transaction. An organization can
be a company, municipality, state, tribe, farmer
cooperation or even church community where
each organization can be represented by a
delegate, director, chief.

SpatialUnit Similar name A single area (or multiple areas) of land and/or
water, or a single volume (or multiple
volumes) of space. Spatial units may be
described in text (e.g. ‘from this tree to that
river’), or based on a single point, or
represented as a set of unstructured lines.

RRR (Right,
Responsibility,
Restriction)

SocialTenureRelationship This can be a:
• Right - An action, activity or series of

actions that a party may perform on or
using an associated resource such as
grazing, fishing or ownership.

• Responsibility - Formal or informal
obligation to do something such as to
maintain a monument.

• Restriction - Formal or informal
obligation to refrain from doing

The STDM Development: Srategic Choices and Design Features, (7248)
John Gitau, Solomon Njogu and Danilo Antonio (Kenya)

FIG Congress 2014
Engaging the Challenges – Enhancing the Relevance
Kuala Lumpur, Malaysia 16-21 June 2014

4/17
The

something.

SpatialUnitGroup AdminUnitSet This is made up of one or more spatial units, or
constitute a larger spatial unit group or can
even be a combination of spatial units and
spatial unit groups.

Table 1: Terminology differences between LADM and STDM
	

2. KEY PRINCIPLES AND STRATEGIC CHOICES

The need for efficient and effective land rights’ recordation tools and use of IT has
become a necessity as emphasized by (Steudler, Törhönen and Pieper, 2010), hence in
selecting the right combination of tools for the STDM framework, it was important to
ensure that these tools incorporated the latest and most relevant technologies and
standards, while at the same time ensuring that they adhered to GLTN’s core values (i.e.
affordability, systematic large scale, gender responsive and pro-poor) and was based on
free and open source software (FOSS) i.e. customizable such that there would be no
acquisition costs, no license fees (purchase or maintenance), and no upgrade fees.

The second criteria was that the platform had to be GIS-based as one of the core entities
of the STDM is ‘spatial units’ – these are geometry objects (or textual descriptions) that
can either be in 2D or 3D representations (LADM, ISO 2012). The role of GIS as the core
framework of the tool enables the linkage and visualization of the spatial units with
regard to land tenure; land and property taxation; planning and management of utilities
such as water, sewerage, electricity, telecommunication; and linkages to existing forms of
land-use (Dale and McLaren, 2005).

Thirdly, the platform had to provide an extensible framework which enabled it to be
customized using a multiplatform scripting language such as Java, Python, C++. The
initial platform was Microsoft Windows but in future, the system should be easy to
deploy in Macintosh and UNIX (multiple flavors) platforms.

The fourth was that the platform had to be scalable in terms of:

- supporting seamless integration of external generic or legacy systems such as web
mapping applications or ERP systems using appropriate web services.

- enable terabyte-level storage of data without compromising on performance.

This capability enables the system to be used in a variety of situations from community
level to national level. The organizational setups could range from standalone client-
server configurations; dedicated server installations where multiple clients can access the
database repository in LAN environment, which is the typical setup in small
organizations; and finally, large national distributed cadastral databases.

The STDM Development: Srategic Choices and Design Features, (7248)
John Gitau, Solomon Njogu and Danilo Antonio (Kenya)

FIG Congress 2014
Engaging the Challenges – Enhancing the Relevance
Kuala Lumpur, Malaysia 16-21 June 2014

5/17
The

With these principles in mind, the final release of STDM version 0.9.5 was deployed as
Windows desktop software that was built on top of existing free and open-source
geographic information systems (GIS). The software provides a framework for recording
and visualizing social tenure relationships in the context of informal settlements in
Uganda. It is clear that the framework can adopt to other context and situations.

The STDM version was piloted in Mbale Municipality in 2011-2012 in partnership with
Shack/Slum Dwellers International, Cities Alliance and International Federation of
Surveyors, national and local authorities and stakeholder groups.

3. DESIGN FEATURES AND IMPLEMENTATION

3.1. Application Architecture

Conventional land information systems have in common the need for a spatial data store
that is responsible for recording and maintaining all cadastral and boundary information,
and graphical editing tools for creating and updating boundary information in a map. In
this regard, the implementation of STDM is based on the same principles for storing
‘people-land’ relationships as well as the corresponding social tenure relationships. It
consists of three basic software components – a spatially-enabled data repository
provided by PostgreSQL/PostGIS, Quantum GIS (QGIS) as the GIS client and the STDM
plugin that is built on top of QGIS.	

	

3.1.1. PostgreSQL/PostGIS Database Repository

The core of the STDM system is the data repository which stores all the data (both spatial
and textual). It is very important that the data storage is reliable and safe. As is a basic
requirement for any relational database management system to be able to manage large
amounts of data while restricting unauthorized access to the information, textual land
tenure data can be stored in PostgreSQL 8.4 but in order to be able to store and maintain
spatial data representing spatial units (either as points, lines or polygons), PostGIS 1.5
spatial database engine extends PostgreSQL with this functionality.

Some of the reasons that make PostgreSQL appealing as the core data repository for
STDM are: it provides the best option with regard to the total cost of ownership (TCO)
when compared to other DBMS products (Web Commerce Group, 2002); it supports
database replication for improved reliability; it enables database administrators (DBAs) to
write custom functions using multiple languages inside the database such as Python,
Ruby, R, C, V8 JavaScript; DBAs can incorporate NoSQL capabilities; there are short
release cycles of approximately 15 months for new versions; it has the capability of
connecting to external data systems as if they existed locally within the database using
foreign data wrappers; and, its use by around 30% of tech companies globally for core
applications such as Microsoft for Skype, Apple for Apple Remote Desktop 2, Fujitsu,
etc.

The STDM Development: Srategic Choices and Design Features, (7248)
John Gitau, Solomon Njogu and Danilo Antonio (Kenya)

FIG Congress 2014
Engaging the Challenges – Enhancing the Relevance
Kuala Lumpur, Malaysia 16-21 June 2014

6/17
The

PostgreSQL/PostGIS provides numerous geometry and topology functions for creating
and maintaining spatial units in STDM. One of the strengths of PostgreSQL/PostGIS is
that it has become the standard spatial database for all open source GIS packages
(Ramsey, 2007).

The PostgreSQL installer comes with pgAdmin, a graphical user interface that caters for
the needs of all users, ranging from writing simple SQL queries to developing complex
databases.

	

3.1.2. The GIS Engine: Quantum GIS

Open-source GIS software has really taken off during the last couple of years and there is
a full range of desktop GIS products that are useful for land information systems. New
versions are coming out regularly and there have been major improvements in vector
editing, database connections and spatial operations.

For implementing the GIS engine for STDM, GLTN selected Quantum GIS (QGIS) 1.8
as the core client software due to:

- Its capability in providing a rich feature set of vector editing functions for creating
and maintaining spatial units (whether in point, line or polygon form), topology
validation, native spatial database support, and support for common vector and
raster data formats (through its utilization of GDAL/OGR library).

- Its growing community of users and developers, which means that there is more
widespread usage; extended functionality and shorter release cycles of newer
versions.

- The huge volume of QGIS support and tutorials that are easily accessible through
various websites.

- Its built-in support of PostGIS layers stored in a PostgreSQL database. In QGIS,
PostGIS layers provide cutting-edge and more accurate spatial capabilities such as
spatial indexing, filtering and querying capabilities.

- Most importantly, it offers a sophisticated plugin architecture that supports
customization using C++ or Python programming languages. This allows new
features/functions to be easily added to the application. Many of the features in
QGIS are actually implemented as core or external plugins. STDM client has been
implemented as a QGIS plugin using Python programming language.

-

3.2. Interaction of STDM Plugin with PostgreSQL/PostGIS

QGIS comes with the Psycopg2 library, which is the most popular PostgreSQL database
adapter for the Python programming language. Psycopg2 is small, efficient and secure,
and supports Python data types which are automatically adapted to matching PostgreSQL
data types.

The STDM Development: Srategic Choices and Design Features, (7248)
John Gitau, Solomon Njogu and Danilo Antonio (Kenya)

FIG Congress 2014
Engaging the Challenges – Enhancing the Relevance
Kuala Lumpur, Malaysia 16-21 June 2014

7/17
The

The STDM QGIS plugin heavily utilizes Psycopg2 for carrying out CRUD (Create, Read,
Update, Delete) operations of both spatial and textual records stored in the
PostgreSQL/PostGIS database repository.

The STDM QGIS plugin uses the STDMPGProvider class, which provides the business
layer methods for accessing the STDM PostgreSQL/PostGIS database. The code snippet
below illustrates the implementation of deleting a spatial unit using the primary key of the
spatial unit:

import psycopg2

class STDMPGProvider(object):
 '''
 STDM PostgreSQL/PostGIS data provider.
 '''

 def deleteSpatialUnit(self,gid):

 #Method for deleting for the spatial unit record

 conn = psycopg2.connect(self.connStr)
 cur = conn.cursor()
 cur.execute('DELETE FROM spatial_unit WHERE gid=%s',(gid,))
 conn.commit()
 cur.close()
 conn.close()

Where applicable, the methods in the STDMPGProvider class always pass parameters to
SQL queries using the %s argument (as shown in the snippet above) to help prevent
against an SQL injection attack. This can occur if the variable containing the data to be
sent to the database comes from an untrusted source (e.g. a form published on a web site)
an attacker could easily craft a malformed string, either gaining access to unauthorized
data or performing destructive operations (such as table deletions) on the database (Cisco,
2014).

3.3. The Graphical User Interface

QGIS is built on the Qt framework – a cross platform and open source application
framework that is widely used for building graphical user interfaces (GUIs) as well as
non-GUI programs such as command-line tools and consoles for servers. Qt software is
built using the C++ programming language, though other language bindings exists,
specifically PyQt.

PyQt refers to the Python bindings that wrap the C++ Qt libraries, which means that now
Python can be used to build Qt applications instead of learning C++. Hence, using the

The STDM Development: Srategic Choices and Design Features, (7248)
John Gitau, Solomon Njogu and Danilo Antonio (Kenya)

FIG Congress 2014
Engaging the Challenges – Enhancing the Relevance
Kuala Lumpur, Malaysia 16-21 June 2014

8/17
The

PyQt wrappers to access QGIS libraries was a practical solution for implementing the
STDM QGIS plugin because QGIS was already built on top of Qt libraries.

STDM plugin GUI controls were built using Qt Designer – a tool for designing and
building GUIs from Qt widgets using drag-and-drop operations. Qt Designer use XML .ui
files to store designs and does not generate any code itself. Below is a code snippet of Qt
Designer XML structure for STDM’s login window:

<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">

 <class>frmLogin</class>
 <widget class="QDialog" name="frmLogin">
 …
 <property name="windowTitle">
 <string>STDM Login</string>
 </property>
 …
 <property name="text">
 <string>UserName</string>
 </property>
 …
 <widget class="QLineEdit" name="txtPassword">
 <property name="minimumSize">
 <size>
 <width>0</width>
 <height>30</height>
 </size>
 </property>
 <property name="echoMode">
 <enum>QLineEdit::Password</enum>
 </property>

…
</ui>
	

In order to use the XML structure defining the GUI in PyQt, it needs to be converted to
the corresponding Python code using pyuic4 - a Python script that compiles the QT
Designer XML layouts into a Python module. The generated Python output file for the
login window is as shown below:

-*- coding: utf-8 -*-

Form implementation generated from reading ui file 'ui_login.ui'

Created: Tue Feb 18 17:45:33 2014
by: PyQt4 UI code generator 4.10.3

WARNING! All changes made in this file will be lost!

from PyQt4 import QtCore, QtGui

try:

The STDM Development: Srategic Choices and Design Features, (7248)
John Gitau, Solomon Njogu and Danilo Antonio (Kenya)

FIG Congress 2014
Engaging the Challenges – Enhancing the Relevance
Kuala Lumpur, Malaysia 16-21 June 2014

9/17
The

 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 def _fromUtf8(s):
 return s

try:
 _encoding = QtGui.QApplication.UnicodeUTF8

 def _translate(context, text, disambig):
 return QtGui.QApplication.translate(context, text, disambig, _encoding)
except AttributeError:
 def _translate(context, text, disambig):
 return QtGui.QApplication.translate(context, text, disambig)

class Ui_frmLogin(object):
 def setupUi(self, frmLogin):
 frmLogin.setObjectName(_fromUtf8("frmLogin"))
 frmLogin.resize(320, 208)
 frmLogin.setMaximumSize(QtCore.QSize(320, 16777215))
 …
 self.txtUserName = QtGui.QLineEdit(frmLogin)
 self.txtUserName.setMinimumSize(QtCore.QSize(0, 30))
 self.txtUserName.setObjectName(_fromUtf8("txtUserName"))
 …
 self.gridLayout.addWidget(self.label_2, 1, 0, 1, 1)
 self.txtPassword = QtGui.QLineEdit(frmLogin)
 self.txtPassword.setMinimumSize(QtCore.QSize(0, 30))
 self.txtPassword.setEchoMode(QtGui.QLineEdit.Password)
 self.txtPassword.setObjectName(_fromUtf8("txtPassword"))
 self.gridLayout.addWidget(self.txtPassword, 1, 1, 1, 1)
 self.gridLayout_2.addLayout(self.gridLayout, 1, 0, 1, 1)
 self.btnBox = QtGui.QDialogButtonBox(frmLogin)

self.btnBox.setStandardButtons(QtGui.QDialogButtonBox.Cancel|QtGui.QDialogButtonBox.Ok)
 self.btnBox.setObjectName(_fromUtf8("btnBox"))
 self.gridLayout_2.addWidget(self.btnBox, 2, 0, 1, 1)
 self.vlNotification = QtGui.QVBoxLayout()
 self.vlNotification.setObjectName(_fromUtf8("vlNotification"))
 self.gridLayout_2.addLayout(self.vlNotification, 0, 0, 1, 1)

 self.retranslateUi(frmLogin)
 …

 def retranslateUi(self, frmLogin):
 frmLogin.setWindowTitle(_translate("frmLogin", "STDM Login", None))
 self.label.setText(_translate("frmLogin", "UserName", None))
 self.label_2.setText(_translate("frmLogin", "Password", None))

4. FUNCTIONAL DESIGN

The STDM Development: Srategic Choices and Design Features, (7248)
John Gitau, Solomon Njogu and Danilo Antonio (Kenya)

FIG Congress 2014
Engaging the Challenges – Enhancing the Relevance
Kuala Lumpur, Malaysia 16-21 June 2014

10/17

Like any other information system or software, STDM version 0.9.5 incorporated
upgrades to the core functionality, ease of use in the installation process as well improved
user experience of the tool, from its previous version 0.8. The prior process of gathering
information regarding its feature set and capabilities was based on:

a. Internal peer review and recommendations by the GLTN team working
directly on the tool.

b. Feedback received by participants during the training events on the use and
application of STDM.

c. Assessment of the realities on the ground during the customization of STDM
in different thematic areas. This was especially so if the functional
requirement was common across different contexts.

Figure 2 below summarizes the main activities that helped identify its feature set and
capabilities.

	

Figure 2: Activities used to determine functional requirements of STDM v0.9.5

	

4.1. The Feature List

Based on an evaluation of the software requirements resulting from Figure 2 above, the
following main features have been incorporated in STDM version 0.9.5:

- CRUD operations of STDM data model entities: project area, household, spatial
unit (represented as structures), person, social tenure relationship, enumerator,
respondent.

Internal peer review

Common	

func)onal	
 needs	
 in	

country	

implementa)ons	

Feedback from
training events

	

Criteria for
determining the
feature-set of

STDM

The STDM Development: Srategic Choices and Design Features, (7248)
John Gitau, Solomon Njogu and Danilo Antonio (Kenya)

FIG Congress 2014
Engaging the Challenges – Enhancing the Relevance
Kuala Lumpur, Malaysia 16-21 June 2014

11/17

- Importation of textual and spatial data from CSV and shapefile file formats
respectively into the STDM database. One unique capability of this tool is that it
provides source- and destination-column matching for specifying which values
from given columns will be imported into the STDM database repository.

- Modular and logical arrangement of entity data management windows.
- Support for most file formats as documentary evidence for either spatial unit (e.g.

photo of the structure), persons (e.g. photo of a person or government national
identity card), household or social tenure relationship (photo or scan of lease
agreement or tax receipt).

- Hierarchical archiving of the supporting documents in the folders and workspaces.
- Transferable workspaces between different projects.
- Basic reporting using a generic report builder.
- Generation of certificate of residency using an intuitive certificate composer

module.
- Generic chart generation facility for generating plots and graphs.
- Standalone server or client installers for installation of server or client software

components respectively.
- Deployable in a LAN environment for simultaneous multiuser connections.
- Support for 32- and 64-bit MS Windows (XP, Vista, 7, 8).
- Customizable post-installation user options through an intuitive wizard.

4.2. Module Design Using Unified Modelling Language

The design of the STDM plugin is based on object-oriented principles, which integrates
seamlessly with the model driven architecture of STDM’s data model. In order to
simplify the design process, Unified Modelling Language (UML) has been used to
document the different various perspectives of each module.

UML is a general-purpose modelling language used extensively for specifying
constructing and documenting software systems. It includes specifications for fourteen
different diagrams used to document various perspectives of a software solution from
projection inception to installation and maintenance (Sparx, 2008).

Depending on the complexity of the design, each STDM module utilizes at least two of
the UML diagrams, that is Use Case and Class diagrams that represent functional and
static views respectively. The use of views in UML provides a means of organizing
features and applications, thus making it easier to identify the right tool for the right job
during the requirements and design stages of each module. See Figures 3 and 4 for
illustrations.

	

	

