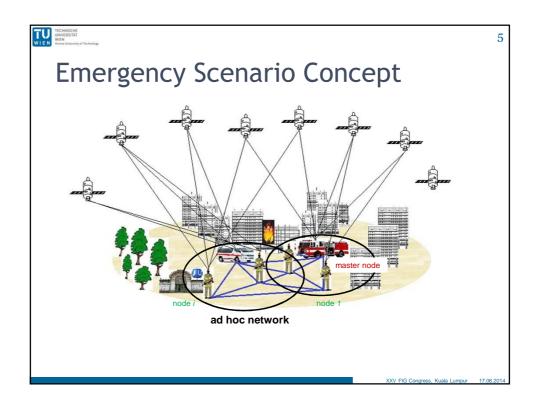
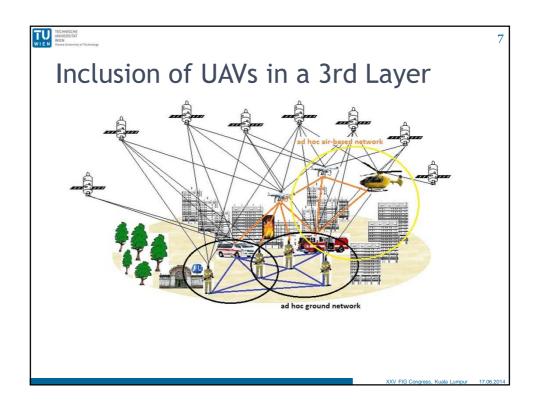
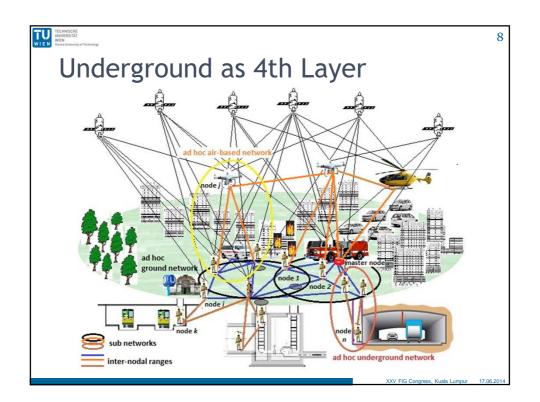

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

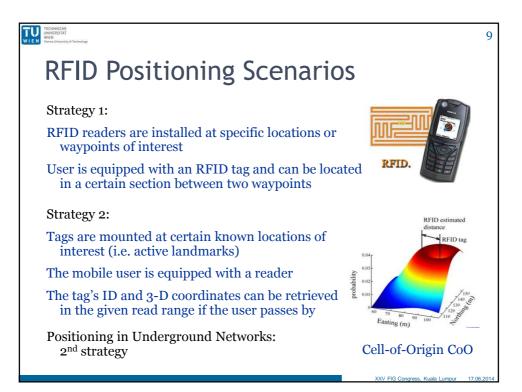
The Fourth Layer in Collaborative Navigation – Going Underground

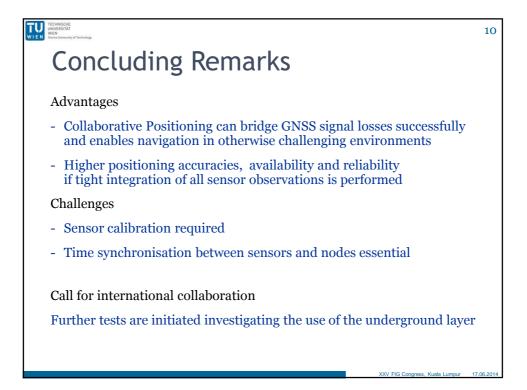

Guenther Retscher

Department of Geodesy and Geoinformation Engineering Geodesy Vienna University of Technology, Austria






sensor	rs and Posi	tioning le	echniques
	SENSOR / TECHNIQUE	NAVIGATION INFORMATION	TYPICAL ACCURACY
RADIO FREQUENCY	GPS Position coordinates Velocity	X, Y, Z V _x , V _y V _z	~ 10 m (DGPS: 1 – 3 m) ~ 0.05 m/s ~ 0.2 m/s
	Pseudolites (e.g. Locata)	X, Y, Z V _x , V _y , V _z	comparable to GPS
	UWB	X, Y, Z	dm-level
	Wi-Fi Fingerprinting	X, Y	3 – 5 m
	RFID cell-based	X, Y	depending on cell size
	RFID Fingerprinting	Χ, Υ	1 – 3 m
INS	Accelerometer	atan, arad, az	< 0.03 m/s ²
	Gyroscope	heading ϕ	0.5° – 3°
OPTICAL SYSTEMS	Image-based	X, Y, Z	few meters
	Optical sensor network	X, Y (Z optional)	few meters
	Laser	X, Y, Z	cm to dm
OTHERS	Digital compass / magnetometer	heading ϕ	0.5° – 3°
	Barometric pressure sensor	Z	1 – 3 m
	Temperature sensor	Т	0.2° – 0.5° C



	at hange i	Measurements
TYPE	OBSERVATION	CHARACTERISTICS
RADIO FREQUENCY	Received signal strength RSS	Channel attenuation which increases with distance Computed from known position of transmitters and the received power Cell-based positioning (Cell-of-Origin CoO), lateration or location fingerprinting
SIGNALS IN WIRELESS SENSOR NETWORKS	Time of Arrival ToA	Distance is computed by signal's travel time as long as the network is synchronized
	Time Difference of Arrival TDoA	Time difference of ToA Hyperbolic positioning method
	Angle of Arrival AoA	Angle between the propagation direction of an incident wave and some reference direction
RANGING BASED ON	Laser ranging	High accuracy but high power requirement
OPTICAL SENSORY DATA	Computer vision- based estimation	Detection of land marker or distinct feature in the image facilitates the distance measurement

