03-09-2014

High Level Cost Modelling of Elevated Deck & Linkway - the importance of Key Performance Indicators for Cost Planning

> Sr. Quek Jin Keat, Chair of BIM Technical Committee, Quantity Surveying Division, Royal Institution of Surveyors Malaysia; Secretary, BIM Committee, Pacific Association of Quantity Surveyors; Project Director, KPK Quantity Surveyors Sdn. Bhd. (an AECOM affiliate company)

Abstract

- The full potential of QS BIM for cost modelling should be realized
- QS practices will need to organize the historical information of tendered or completed projects into key indicators for economic evaluation of design alternatives
- Information from the public domain such as websites can sometimes be used, with caution

Abstract (cont'd)

- Make optimum use of available information to create a cost model where the Level of Detailing provided, of say 100, is insufficient
- There is a need to consider data-mining tools to develop the firm's knowledge management (KM) base
- How this KM base is to be developed will depend on the proper identification of key indicators for economic design evaluation

Key Performance Indicators for Building Structure

03-09-2014

Demand for KPIs for Economic Evaluation

- As property development becomes increasingly competitive and riskier, bankers and accountants are increasingly aware that project costs have to be managed even at the early design stage to meet investment objectives
- Marketers have to do their market research and analysis of what will sell and at what price before the schematic or sketch designs can be firmed up

Demand for KPIs for Economic Evaluation (cont'd)

 There has been a shift in emphasis on measurement (to produce bills of quantities) to that of a building or design economist to provide cost modeling or cost planning advice at the early stages not only to meet requirements of the design brief but also to address financing and marketing concerns.

Evaluation of Structural Systems Design & Facade

- Comparison of Internal and External Shear Wall systems
- Comparison of Post-tensioned Flat Slab system and Conventional Beam & Slab system
- Comparison of unitized glass window system, curtain walling system and aluminum cladding system

Civil Engineering Structures in the Building Domain

- Inter-connecting elevated decks with pedestrian linkways supported by box girder structures between towers have made their appearance
- These are more like civil engineering bridge structures with a broad deck on top spanning between buildings
- This has made the task of using a suitable set of KPIs and benchmarks for cost modeling even more challenging for the QS

03-09-2014

Bridge Design

Bridge design can be classified as:

- single closed box girder composite bridge,
- twin girder cross-beam directly supporting bridges with cantilever,
- twin girder cross-beam directly supporting bridges without cantilever,
- multi-girder composite bridge,
- cross-beam composite bridges with deck local widening near abutments,
- variable width cross-beam composite bridge,
- special girder composite bridges

Brief Cost Plan for Elevated Deck & Linkway (for illustration only, cost/m2 not shown)		
No.	Elements	Amount (RM)
1	Main Grid Space Truss & Non-long Span Structure	200,000,000
2	Linkway	42,000,000
3	Support columns, pile caps & bored piling - allow	10,000,000
4	Retail areas at deck (light structure) - allow	4,000,000
5	Escalator, elevator & staircase	3,000,000
6	Interfacing with existing building - allow	3,000,000
7	Diversion, underpinning, trial pits - allow	10,000,000
8	M&E installation - allow	10,000,000
9	Landscaping - allow	4,000,000
10	General Preliminaries - 15%, say	43,000,000
11	Contingencies - 10%, say	33,000,000
12	Total	362,000,000

Relationship between Span and Cost

- It can be generalized that the larger the spans, the heavier the steel tonnage required
- Therefore, the weight of structural steel members (in terms of kg. per m2 of deck area) increases if the span increases
- The average kg. per m2 of deck area ranges from 0.25 – 0.33 kg. per m2, depending on the box girder type, whether there are supporting cross-beams or propped cantilevers or not

Price Grouping of Bridge Structures

(refer to main paper)

Extracting Information from a Model Project Cost Pla Quantity UCM Rate SubTotal Factor Code Descriptio Total 6,495,572 496,575 9,049,344 2,209,555 1,205,000 6.495.572 496.575 9.043.344 2.203.555 1.205.000 5.776.099 Frea 9.548.75 m 718.62 m 141 nd 718.62 mi 735.49 mi 3.104.62 m2 585.25 m2 283.40 m2 13 ne 2.125.87 m2 445.92 m 184.13 m 360.00 m 233.80 m 24.00 m 1.073-28 m 852.72 m

Project Information Management Systems and Knowledge Management

- Newforma
- Aconex
- Apex
- Cost XL

The above are for Buildings, what about civil engineering applications?

