

Geoid Model Estimation without Additive Correction Using KTH Approach for Peninsular Malaysia

SAIFUL AMAN Hj Sulaiman¹, KAMALUDDIN Hj Talib¹, OTHMAN Mohd Yusof¹, JASMEE Jaafar¹ & AZAHRI Mohamed²

> ¹ Universiti Teknologi MARA, Malaysia ² Department Survey and Mapping Malaysia

> > saifulaman@salam.uitm.edu.my

Commission No.5

Overview

- Introduction
- KTH Approach
- Data Used
- Numerical Computation
- Result and Analysis
- Conclusion
- Acknowledgement

XXV International Federation of Surveyor Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

Introduction

- Geoid Model Vital information in determination of orthometric height via GNSS technology
- Determination of precise geoid model global agenda.
- There are several approaches can be used in determination of geoid height such as Remove Compute Restore, UNB Stoke Helmerts and KTH approach.
- In this study, the geoid height is computed using KTH approach.


```
XXV International Federation of Surveyor
Congress, Kuala Lumpur, Malaysia, 16 – 2
June 2014
```


KTH APPROACH

- Initiated by Lars E. Sjöberg in 1984.
- Also known as Least Square Modification of Stokes'
- The main goal of this approaches is to minimize the expected global mean squares errors.
- Surface gravity anomaly without any reduction process is used in this approaches.

KTH APPROACH

 The most fundamental formula in computing geoid height is Stokes's formula (Hofmann & Moritz, 2005).

$$N = \frac{R}{4\pi\gamma} \iint_{\sigma} S(\Psi) \Delta g d\sigma$$

- Gravity anomaly –located on geoid surface.
- Assume that no masses outside the geoid.

XXV International Federation of Surveyor Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

KTH APPROACH

Modified Stokes' Formula (KTH approach)

$$\widetilde{N} = \frac{R}{4\pi\gamma} \iint_{\sigma_0} S_L(\psi) \, \Delta g^o \, d\sigma - \frac{R}{2\gamma} \sum_{n=2}^M (Q_n^L + s_n) \, \Delta g_n^{GGM}$$

Where:

$$S_{L} = \text{Modified Stoke's function} \quad s_{L} = S(\psi) - \sum_{n=2}^{L} \frac{2n+1}{2} s_{n} P_{n}(\cos \psi)$$
$$Q_{n}^{L} = \text{Molodensky truncation coefficient} \quad Q_{n}^{L} = Q_{n}(\psi_{o}) - \sum_{n=2}^{\infty} \frac{2k+1}{2} s_{k} E_{nk}(\psi_{o})$$

*s*_n = Modification parameters

$$\Delta g^{^o}\,$$
 = Land Observed Gravity Anomaly

 $\Delta g_{_n}^{_{_{GGM}}}$ = GGM Gravity Anomaly

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

KTH APPROACH

- Most important element in modified Stoke's formula is Modification Parameters (s_n)
- Modification Parameters (s_n) need to determine accurately.
- S_n solve by Least Square.
- The quality of S_n is depending to the quality of land observed gravity data, radius of integration cap (Ψ_o) and the characteristics of the GGM.


```
XXV International Federation of Surveyor
Congress, Kuala Lumpur, Malaysia, 16 – 2
June 2014
```


UPM

- Land Observed Surface Gravity data
- 3500 Land Observed Surface Gravity data.
- QC using cross validation
- 3224 passed and used in geoid determination

DATA USED

Global Geopotential Model

- GOCO01s pure satellite
- Composed : GOCE + GRACE
- ➢ Degree and order up to 224

XXV International Federation of Surveyor Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

DATA USED

• Digital Elevation Model

- Combined 3arc second DSMM Digital Elevation Data (DTED) and 30 second SRTM data
- Mountainous area :- DSMM DTED
- Flat area:- SRTM data
- Used for interpolation and converting point to grid free air anomalies

DATA USED

GNSS/GPS leveling

- ➤ 70 GNSS/GPS levelling points
- Used to external and independent tools to estimate the accuracy of geoid height in absolute sense.
- ➢ GNSS/GPS levelling point was observed on the Benchmark or Standard Benchmark


```
XXV International Federation of Surveyor
Congress, Kuala Lumpur, Malaysia, 16 – 2
June 2014
```


- The modification parameter (s_n) need to be determine accurately
- Elements that contribute in accuracy of modification parameter (s_n) are:
 - Upper Limits of the GGM (M) and Stokes' Function (L)
 - *Spherical cap (Ψ_o) and correlation distance (Ψ) around computation points

*Estimation errors in observed land gravity data $(\sigma_{\Delta g})$.

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

UNIVERSITI Teknologi

• Elements examined in the determination of the Modified Coefficient Parameter

M=L	Integration Cap (Deg)	Correlation Length (Deg)	Terrestrial Error (mGal)
30			
60	0.1	0.05	0.40
120	0.5	0.10	1.00
150	1.0	0.20	5.00
180	2.0	0.30	10.00
max	3.0	0.40	20.00

- One of the input condition parameters is replaced while the remaining condition parameters are fixed.
- The second condition parameter will be replaced and the process is repeated.


```
XXV International Federation of Surveyor
Congress, Kuala Lumpur, Malaysia, 16 – 2
June 2014
```


RESULT AND ANALYSIS

 The optimum modification coefficient parameter will be determined by comparing the result of the computed Gravimetric Geoid Model with known GPS/levelling datasets used in this study.

RESULT AND ANALYSIS

Step	Parameter	Different Option					
1	M=L	30	60	120	150	180	max
	Spherical Cap	3.0					
	Correlation Length	0.1					
	Terrestrial Error	0.4					
	Min	0.670	0.496	0.286	0.131	0.121	0.114
	Max	2.662	2.212	1.380	0.999	0.939	0.939
	Average	1.444	1.148	0.582	0.354	0.338	0.337
	RMSE	1.524	1.231	0.629	0.388	0.368	0.368
2	Spherical Cap		0.1	0.5	1.0	2.0	3.0
	M=L	180					
	Correlation Length	0.1					
	Terrestrial Error	0.4					
	Min		0.373	0.331	0.357	0.327	0.121
	Max		0.992	1.326	1.436	1.191	0.939
	Average		0.632	0.563	0.656	0.517	0.338
	RMSE		0.650	0.594	0.696	0.546	0.368

XXV International Federation of Surveyor Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

RESULT AND ANALYSIS

Step	Parameter	Different Option					
3	Correlation Length		0.05	0.10	0.20	0.30	0.40
	M=L	180					
	Spherical Cap	3.0					
	Terrestrial Error	0.4					
	Min		0.134	0.121	0.116	0.121	0.116
	Max		0.968	0.939	0.916	0.896	0.882
	Average		0.106	0.100	0.096	0.094	0.092
	RMSE		0.381	0.368	0.362	0.357	0.356
4	Terrestrial Error		0.40	1.00	5.00	10.00	20.00
	M=L	180					
	Spherical Cap	3.0					
	Correlation Length	0.4					
	Min		0.882	0.754	0.689	0.709	0.755
	Max		0.116	0.042	-0.028	-0.001	-0.050
	Average		0.330	0.305	0.291	0.289	0.285
	RMSE		0.356	0.330	0.321	0.324	0.335

CONCLUSION

- An estimated gravimetric geoid model of Peninsular Malaysia was developed using the KTH approached without additive corrections.
- The estimated geoid model of Peninsular Malaysia is computed based on a set of predetermined modification coefficients.
- The optimum set of condition parameters: M=L= 180, Ψ₀=3. 0°, Ψ=0. 4° and σ_{Δg}= 5.0 mGal.
- The accuracy of estimated gravimetric geoid model of Peninsular Malaysia is ±32.1cm

- Financial assistance from Malaysian Land Surveyors Board (LJT).
- Department of Survey and Mapping Malaysia-
- Universiti Teknologi MARA, Malaysia


```
XXV International Federation of Surveyor
Congress, Kuala Lumpur, Malaysia, 16 – 2
June 2014
```


Thank you for your attention!

Center of Studies Surveying Science and Geomatics Faculty of Architecture, Planning and Surveying Universiti Teknologi MARA, Malaysia 40450 Shah Alam

Email: saifulaman@salam.uitm.edu.my

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

