

Application of 3D Laser Scanning for Deformation Measurement on Industrial Objects

Luka BABIĆ, Boško PRIBIČEVIĆ, Almin ĐAPO, Croatia University of Zagreb, Faculty of Geodesy

INTRODUCTION

Heat exchanger in the Oil refinery Rijeka

- Problems occurred during the removal of its envelope while conducting regular maintenance
- Requested by construction engineers
- High accuracy demands
- Of the many facets of laser scanning application, the most prominent and effective one is, without a doubt, the one for deformation analysis purposes

THE PROBLEM

- The envelope couldn't be removed easily but instead had to be shifted vertically using cranes to allow extraction without scraping the assembly residing within
- Subsidence of the tracks carrying the envelope or a vertical divergence of the heat exchangers envelopes base, i.e. the flange, were judged to be at fault

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 21 June 2014

SURVEY

- Scanning form left, right and bottom
- Sphere target registration
- One scan captured all the spheres
- Scanner to sphere distance < 5 m</p>
- Precise leveling of the tracks
- Survey using a total station (georeferencing)

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 21 June 2014

ANALYSIS - TRACKS

Comparison of track axis with that of the flange

 Determining track axis and flange axis
Alignment of the track axes in line with the flange axis

RESULTS - TRACKS

- Precise leveling
- Beginning to end showed minimal discrepancies
- Tracks horizontal

- Fitting a cylinder to extracted points of the flange for determining the flange axis
- Fitting a plane to extracted points of the flange contact surface for determining verticality
- Numerical values

	Number of points	Coordinates of the center (m)	Normal vector (m)	Standard deviation (mm)
Flange envelope Radius (1.7335)	141 957	5463269.63847; 5015873.37341; 61.70562	-0.84699; 0.53160; -0.00303	0. 49
Flange surface	269 743	5463269.54456; 5015873.43279; 61.70459	-0.84699; 0.53160; -0.00303	1.19

Graphical representation

Propagation of offset between track and flange axis with distance

Angular value between z and flange axis

Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 21 June 2014

CONCLUSION

- Terrestrial laser 3D scanning is one of the most promising contactless measurement technologies
- It allows acquisition of a large amount of precisely measured points in a very short period of time
- In this specific project it proved as a valuable asset without which it would have been very hard if not impossible to obtain data of adequate value for deriving sound conclusions
- Whether it be for documentation of complex facilities or deformation analysis, the basic requirement is the same: to have the ability to collect comprehensive, detailed and accurate data that can ensure deriving relevant conclusions and produce valuable information

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 21 June 2014

Thank you!

Questions?