







- Open Source : MeshLab, PCL, VTK,
- Commercial Software: RapidForm , FaroScene , Kubit ,Geomagic......



# The Hybrid Technique

• The algorithms used to generate 3D model from laser scanner

**UTM** 

- The pipelines for 3D modeling from laser scanner point clouds
- Towards automation of 3D modeling process



## Point cloud Registration

- Iterative Closet Point (ICP):Besl and Mckay,1992;Chen and Medioni,1992; Zhang,1992
- Variation of ICP algorithm: Rusinkiewicz and Levoy ,2001; Greenspan and Godin, 2001; Gruen and Arka, 2005
- Least Square Method : Gruen and Arka,2005



# Surface Reconstrcution

- The Crust algorithm (Amenta and Bern, 1999)
- The COCONE algorithm (Amenta et al ,2002)
- Tight COCONE algorithm (Dey and Goswami, 2003)
- The PowerCrust algorithm (Amenta et al ,2000 & 2001)

•

**UTM** 

UTM



innovative • entrepreneurial • global

#### **3D MODEL ACQUISITION PIPELINE**







#### HYBRID 3D MODELING TECHNIQUE

XXV International Federation of Surveyors

innovative • entrepreneurial • global





Sources: Dey and Sun(2005). An Adaptive MLS Surface for Reconstruction with XXV International Federation of Surveyors Georgeone Kurle Lumour Malausia, 16 – 21







#### Object



(a)Bowl



(b) Vase



(c) Skull







Comparison of iteration and RMS error for ICP algorithm

| Model | RMS error<br>from classical<br>ICP<br>algorithm(mm) | Iteration of<br>classical ICP<br>algorithm | RMS error for<br>proposed ICP<br>algorithm(mm) | Iteration of<br>Proposed ICP<br>algorithm |
|-------|-----------------------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------|
| Bowl  | 3.7133                                              | 25                                         | 3.714                                          | 14                                        |
| Vase  | 0.2987                                              | 32                                         | 0.302                                          | 25                                        |
| Skull | 0.5333                                              | 27                                         | 0.529                                          | 14                                        |

XXV International Federation of Surveyors

innovative ● entrepreneurial ● global June 2014 www.utm.m



The graph shows the time used by modified ICP algorithm to merge the point clouds when the number of sample point increase.

XXV International Federation of Surveyors

UTM



#### 3D SURFACE FROM HYBRID TECHNIQUE VS 3D SURFACE FROM RAPIDFORM







### THE COMPARISON OF FINAL SURFACE GENERATED FROM RAPIDFORM TO FINAL SURFACE GENERATED FROM HYBRID TECHNIQUE

|                                                                           | al ● global    | June 2014        | www.utm.my                                                                                                      |
|---------------------------------------------------------------------------|----------------|------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                           |                |                  |                                                                                                                 |
|                                                                           |                |                  |                                                                                                                 |
| UTTM<br>IVERSITI TEKNOLOGI MALAYSIA                                       |                |                  |                                                                                                                 |
|                                                                           | Rowl           | model (unit in r | nml                                                                                                             |
|                                                                           | DUWI           | model (unit in i |                                                                                                                 |
|                                                                           |                |                  |                                                                                                                 |
|                                                                           |                |                  |                                                                                                                 |
|                                                                           |                | _                |                                                                                                                 |
| 0.05097                                                                   | Tand data sure |                  |                                                                                                                 |
| 0.04588                                                                   | 99,35260%      | s                |                                                                                                                 |
|                                                                           |                |                  |                                                                                                                 |
| 0.04078                                                                   |                |                  |                                                                                                                 |
| 0.04078                                                                   |                |                  |                                                                                                                 |
| 0.04078<br>0.03568<br>0.03058                                             |                |                  |                                                                                                                 |
| 0.04078<br>0.03568<br>0.03058<br>0.02549                                  |                |                  |                                                                                                                 |
| 0.04078<br>0.03568<br>0.03058<br>0.02549<br>0.02039                       |                |                  |                                                                                                                 |
| 0.04078<br>0.03568<br>0.03058<br>0.02549<br>0.02039<br>0.01529            |                |                  |                                                                                                                 |
| 0.04078<br>0.03568<br>0.03058<br>0.02549<br>0.02549<br>0.02039<br>0.01529 |                |                  |                                                                                                                 |
| 0.04078<br>0.03568<br>0.03058<br>0.02549<br>0.02039<br>0.01529<br>0.01019 |                |                  | the second se |







#### THE COMPARISON OF 3D MODEL FROM HYBRID TECHNIQUE TO REAL OBJECT (MEASUREMENT)

|                  |                                                | Y                                                                                                 |            |
|------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------|------------|
|                  | Measurement for rea                            | al object Measurement for 3D                                                                      |            |
|                  | (cm)<br>X=7.50                                 | x=7.46 (0.04)                                                                                     |            |
|                  | Y=15.5                                         | Y=15.6(0.15)                                                                                      | _          |
| innovative • ent | X)<br>Co<br>repreneurial • global              | XV International Federation of Surveyors<br>ongress, Kuala Lumpur, Malaysia, 16 – 21<br>June 2014 | www.utm.my |
|                  | M                                              |                                                                                                   |            |
|                  | Measurement for r<br>(cm)<br>X=25.00           | eal object Measurement from 3D mod<br>(cm)<br>X=24.88(0.12)                                       | lel        |
|                  | Measurement for r<br>(cm)<br>X=25.00<br>Y=5.13 | eal object Measurement from 3D mod<br>(cm)<br>X=24.88(0.12)<br>Y=5(0.13)                          | lel        |





innovative • entrepreneurial • global

UTM

#### Conclusions

#### Hybrid Technique :

-Always generate a 3D model with a smooth surface ( the AMLS surface can reduce the effect of noise in 3D model)

- -Always generate the 3D model that free of holes (Delaunay /Voronoi based algorithm that used in this research can automatically remove the unwanted hole on the surface)
- -Can become a standard technique to develop the new 3D modelling system

### The weakness of Hybrid technique

- Voronoi Diagram and Delaunay triangulation are the main computational tool in this research
- The computation of Voronoi Diagram /Delaunay Triangulation is costly : O(n log n)
- Imagine : million of point clouds , a lot of time is needed to compute the Voronoi Diagram/Delaunay Triangulation , even provide high performance computer and good algorithm
- The Voronoi /Delaunay based algorithm close all the hole on the surface even the hole that not cause by the noise. The reconstructed surface is not same with the original object.



#### Future study

- Introduce more practical strategy for point clouds registration
- The generated of 3D model from point clouds without compute Voronoi Diagram or Delaunay Triangulation
- The introduce of new simplication technique in Hybrid technique, so that Hybrid technique can handle huge raw data

| innovative • entrepreneurial • global | XXV International Federation of Surveyors<br><del>Congress, Kuala Lumpur, Malaysia, 16 – 21</del><br>June 2014 | www.utm.my |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|------------|--|
| <b>UTERSIT TEXNOLOGY MALAYSA</b>      | References                                                                                                     |            |  |

- Alexa, M., Behr, J., Cohen, O., Fleishman, S., Levin, D., and Silva, T. (2001). Point set surfaces. Proceedings of the conference on visualization. October 20-26, San Diego, United state.
- Amenta, N., Bern, M., and Epstein, D. (1998a). The crust and the beta skeleton: combinatorial curve reconstruction. Graphics Models and Image Processing, 60(2), 125-123.
- Amenta, N., Bern, M., and Kamvysselis, M. (1998b). A new Voronoi based surface reconstrction algorithm. Proceedings of the 25 annual conference computer graphics and interactive technique. July 19-24, Orlando, United state.
- Amenta, N., and Bern, M. (1999). Surface reconstrction by voronoi filtering. Discrete computational geometrty. 22(4),481-504.
- Amenta, N., Choi, S., and Kolluri, R. (2000). The power crust , unions of balls and the medial axis transform. Computational geometry. 19(2),127-153.
- Besl, P.J. and McKay, N.D. (1992). A method for registration of 3D shapes. IEEE Transcation on pattern analysis and machnie intelligence. 14(2),239-256.



#### References

- Dey, T.K. and Goswami, S. (2003). Tight Cocone : A water tight surface reconstrction. Journal of Computing and Information science in Engineering. 3(4),302-307.
- Dey, T.K. and Goswami, S. (2004). Provable surface reconstrction from noisy sample. Journal of Computational Geometry : Theory and Applicationa. 35(1),124-141.
- Dey, T.K. and Sun, J. (2005a). An adaptive MLS surface for reconstrction with guarantee. Proceedings of 3th Eurographics symposium on geometry processing. October 15-17. Aire-la-ville, Switzerland.
- Dey, T.K. and Sun, J. (2005b). Normal and feature approximation from noisy point clouds. Technical report, OSU-CISRC-7/50-TR50, Department of CSE, Ohio state university.
- Dey, T.K., Goswami, S. and Sun, J. (2005b). Extremal surface based projections converge and reconstruct with isotopy.Technical report OSU-CISRC-4-05-TR25.
- Dey,T.K. (2007). Curve and surface reconstrction :Algorithm with mathematical analysis. Cambridge University Press.
- Fabio, R. (2003). From point clouds to surface: the modeling and visualization problem. International Archives of photogrammetry, Remote Sensing and spatial information sciences. Vol XXXIV-5/w10.
- Fabris, M., Baldi, P., Anzidei, M. and Pesei, A. (2010). High resolution to topographic model of panarea island by fusion of photogrammetric, lidar and bathymetric digital terrain models. The photogrammetric record. 23(132),382-401.

XXV International Federation of Surveyors

innovative • entrepreneurial • global

June 2014

www.utm.my



# THANK YOU