

The Contribution of the Regional Reference Frames

to the

Global Geodetic Reference Frame Implementation

João Agria Torres

International Association of Geodesy

(jagriatorres@gmail.com)

Global Geodetic Reference Frame and CORS Kuala-Lumpur, 19th June 2014

The Contribution of the Regional Reference Frames

to the

Global Geodetic Reference Frame Implementation

... the chairpersons of the IAG Regional RF sub-commissions

1 – Introduction / GGRF

5

FIG

ITRF

INTERNATIONAL TERRESTRIAL REFERENCE FRAME

> Set of geodetic references

Coordinates and velocities estimation based on space geodetic techniques

- VLBI (Very Long Baseline Interferometry)
- SLR (Satellite Laser Ranging)
- GPS (Global Positioning System)
- DORIS (Doppler Orbitography Radiopositioning Integrated by Satellite)

1 – Introduction / GGRF

MAJORITY OF CONTRIBUTION COMES FROM GNSS

IAG SUB-COMMISSION 1.3

GENERAL PURPOSE

SC1.3 Regional Reference Frames deals with the definitions and realizations of regional reference frames and their connection to the global International Terrestrial Reference Frame (ITRF)

Moreover, it offers a home for service-like activities addressing theoretical and technical key common issues of interest to regional organisations

2 - SC Regional Reference Frames

IAG SUB-COMMISSION 1.3

MAIN OBJECTIVES

- Develop specifications for the definition and realization of regional reference frames, including the vertical component with special consideration of gravity data and other data.
- Coordinate activities of the regional sub-commissions focusing on exchange and share of competences and results.
- Develop and promote operation of GNSS permanent stations, in connection with IGS whenever appropriate, to be the basis for the long-term maintenance of regional reference frames.
- Promote the actions for the densification of regional velocity fields.
- Encourage and assist, within each regional subcommission, countries to re-define and modernize their national geodetic systems, compatible with the ITRF.

7

2 - SC Regional Reference Frames

FIIC 3 - Regional activities EUREF • Promotion of the ETRS89 (European Terrestrial Reference System) and the EVRS (European Vertical Reference System) • 250 GNSS stations of EPN (European Permanent Network) operating by mid-2013 (70% GLONASS) • Preparation for Galileo and multi-GNSS EUREF Permanent Tracking Network • Follow-up on the adoption of the INSPIRE Directive

3 - Regional activities

SIRGAS

- Almost all Central and South America countries adopted the reference system defined by SIRGAS
- The SIRGAS-CON (SIRGAS Continuously Operating Network) is composed by 300 stations (45% GLONASS)
- **Regional velocity model** (horizontal) for coordinate update
- Epoch station positions to detect deformations of the reference frame (earthquakes)

New r New r Definition The definition

3 - Regional activities

11

- New realization of the NAD (North America Datum) expected to occur in 2022
- Definition and maintenance of the relationships between the national and international reference systems
- The densification of the ITRF and IGS network is made by weekly combinations of 5 regional weekly solutions

3 - Regional activities

AFREF

• Not much progress in the instalation of GNSS permanent stations

Operational Data Center (since 2010) with an open policy: data from 70 GNSS permanent stations

 The data of 50 stations plus 50 global stations (two week period in Dec 2012) was processed by 5 processing centres and combined to provide a set of static coordinates based on ITRF to be used for everyday surveying and mapping operations

APREF

- Processing of GNSS observations of 480 stations from 28 countries in 3 analysis centers
- Publication of the weekly ITRF coordinate estimates, time series and velocity solutions for the APREF stations
- Coordination of observation campaigns to densify the ITRF in the Asia-Pacific Region in countries without CORS

FIIG

HOW IS THIS GOAL BEING ACHIEVED IN

- Europe
 - > the **ETRS89** was defined 25 years ago
 - > only now it is being adopted officially (INSPIRE)
 - > some countries are still using the classical datums
- > South and Central America
 - > **SIRGAS** uses a ITRF realization of the ITRS
 - it is being adopted progressively
 - some countries are still using the classical datums
- North America
 - NAD 83 is un use
 - Transition is expected by 2022

> Africa

- there is no global knowledge on the situation
- > some countries use WGS84 (surveying)
- > the evolution is very slow

Asia-Pacific

- it is being adopted progressively
- some countries use WGS84 (surveying)
- > evolution is very heterogeneous
- Antarctica
 - > ITRF is used

5 – Impact in user's community

IMPACT

- > How is ITRF used?
 - > Epoch fixed coordinates?
 - > Are velocities/discontinuities taken into account?

> How to adapt to a moving frame?

- > Time span (years/decades?)
- Is present education/capacity building sufficient?

1¹**7**

