

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Real Estate Valuation

Practical Results

Conclusion

Propagating the uncertainty of the market value by the use of a Bayesian regression approach XXV FIG Congress

Sebastian Zaddach and Hamza Alkhatib

Geodetic Institute Leibniz Universität Hannover

Kuala Lumpur, Malaysia, June 19th 2014

Contents

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Real Estate Valuation

Practical Results

Conclusion

Motivation

- 2 Theory of Multiple Linear Regression Analysis
- 3 The Bayesian Approach in Real Estate Valuation
- 4 Practical Results

Motivation

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Real Estate Valuation

Practical Results

Conclusion

- Aim of real estate valuation: determination of market value
- Sales comparison approach: method with the highest marketability
- Hedonic model of the classical linear regression analysis
 - Most frequently applied model in valuation practice
 - Uncertainty is not taken into account explicitly

・ロット (雪) (日) (日)

Aim of this research

Introduction of a Bayesian approach:

- Quantifying the uncertainty of single variables
- Reduction of uncertainty concerning the estimation of parameters

Motivation

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Real Estate Valuation

Practical Results

Conclusion

- Aim of real estate valuation: determination of market value
- Sales comparison approach: method with the highest marketability
- Hedonic model of the classical linear regression analysis
 - Most frequently applied model in valuation practice
 - Uncertainty is not taken into account explicitly

Aim of this research

Introduction of a Bayesian approach:

- Quantifying the uncertainty of single variables
- Reduction of uncertainty concerning the estimation of parameters

Theory of Multiple Linear Regression Analysis

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Rea Estate Valuation

Practical Results

Conclusion

- Standard procedure for analysing the real estate market
- Approximation method:
 - Explanation of variations of a dependent variable *y* by the variability of independent variables *X*

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{e}, \quad \boldsymbol{P} = \sigma_0^2 \cdot \boldsymbol{I}$$

$$\hat{\boldsymbol{eta}} = \left(\boldsymbol{X}' \boldsymbol{X}
ight)^{-1} \boldsymbol{X}' \boldsymbol{y}, \quad \boldsymbol{V} = \left(\boldsymbol{X}' \boldsymbol{X}
ight)^{-1}$$

< D > < P > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nm} \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_m \end{bmatrix}, \quad \boldsymbol{e} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

$$\mathbf{y}: \text{ Independent variables (comparative values)}$$

$$\boldsymbol{\beta}: \text{ Regression coefficients (parameters)}$$

$$\boldsymbol{m}: \text{ Number of independent variables}$$

$$\boldsymbol{i} = 1, \dots, n: \text{ number of data sets}$$

Theory of Multiple Linear Regression Analysis

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Rea Estate Valuation

Practical Results

Conclusion

- Standard procedure for analysing the real estate market
- Approximation method:
 - Explanation of variations of a dependent variable *y* by the variability of independent variables *X*

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{e}, \quad \boldsymbol{P} = \sigma_0^2 \cdot \boldsymbol{I}$$

$$\hat{\boldsymbol{eta}} = \left(\boldsymbol{X}' \boldsymbol{X}
ight)^{-1} \boldsymbol{X}' \boldsymbol{y}, \quad \boldsymbol{V} = \left(\boldsymbol{X}' \boldsymbol{X}
ight)^{-1}$$

・ロット (雪) (日) (日)

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1m} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{nm} \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_m \end{bmatrix}, \quad \boldsymbol{e} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

$$\mathbf{y}: \text{ Independent variables (comparative values)}$$

$$\boldsymbol{\beta}: \text{ Regression coefficients (parameters)}$$

$$\boldsymbol{m}: \text{ Number of independent variables}$$

$$\mathbf{x}: \text{ Dependent variables}$$

$$\mathbf{x}: \text{ Dependent variables}$$

$$\mathbf{x}: \text{ Dependent variables}$$

Propagating the uncertainty of the Basic idea of the Bayesian approach market value by the use of a Bayesian regression approach Zaddach & Alkhatib Theory / Model Data Expertise Data The Bayesian Prior Information Likelihood Approach in Real Estate Valuation Posterior

cf. Weitkamp/Alkhatib 2012: The Bayesian approach in the valuation. Proceedings of FIG Working Week 2012, Rome, Italy,

URL: www.fig.net

$$P(\boldsymbol{\beta}|\mathbf{y}) \propto P(\boldsymbol{\beta}) P(\mathbf{y}|\boldsymbol{\beta})$$

Posterior density \propto Prior density \cdot Likelihood

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Real Estate Valuation

Practical Results

Conclusion

Bayesian Regression Approach

Classical Approach | Bayesian Approach

$$\beta = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \qquad \overline{\beta} = (\mathbf{X}'\mathbf{X} + \underline{\mathbf{V}}^{-1})^{-1}(\mathbf{X}'\mathbf{y} + \underline{\mathbf{V}}^{-1}\underline{\beta})$$
$$\mathbf{V} = (\mathbf{X}'\mathbf{X})^{-1} \qquad \overline{\mathbf{V}} = (\mathbf{X}'\mathbf{X} + \underline{\mathbf{V}}^{-1})^{-1}$$

Posterior parameters: overlined / Prior parts: underlined und red

β: Regression Coefficients (Parameters)V: Cofaktor MatrixX: Design Matrix (Independent Variables)y: Dependent Variable

cf. Weitkamp/Alkhatib 2012: The Bayesian approach in the valuation. Proceedings of FIG Working Week 2012, Rome, Italy

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Real Estate Valuation

Practical Results

Conclusion

Bayesian Regression Approach

Classical ApproachBayesian Approach $\beta = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ $\overline{\beta} = (\mathbf{X}'\mathbf{X} + \underline{\mathbf{V}}^{-1})^{-1}(\mathbf{X}'\mathbf{y} + \underline{\mathbf{V}}^{-1}\underline{\beta})$ $\mathbf{V} = (\mathbf{X}'\mathbf{X})^{-1}$ $\overline{\mathbf{V}} = (\mathbf{X}'\mathbf{X} + \underline{\mathbf{V}}^{-1})^{-1}$

Posterior parameters: overlined / Prior parts: underlined und red

β: Regression Coefficients (Parameters)V: Cofaktor MatrixX: Design Matrix (Independent Variables)y: Dependent Variable

cf. Weitkamp/Alkhatib 2012: The Bayesian approach in the valuation. Proceedings of FIG Working Week 2012, Rome, Italy

- Spatial submarket: Hanover; Objective submarket: condominiums
- Number of data sets: 489 (2008), 132 (2009), 184 (2010)
- Value affecting charasteristics: standard land value (€/qm), age (years), area of living space (qm), distance green areas (m), quality of location (c) a centre of living space (qm).

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Rea Estate Valuation

Practical Results

Conclusion

Practical results: Estimation

Coefficient		Prior (2008)	Posterior ba non-informative prior (2009)	ased on informative prior (2009)
Intercept	$ \begin{array}{c} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{array} $	776.97	926.18	820.56
Standard land value		9.65	2.37	8.67
Age		-3.05	-2.40	-3.36
Area of living space		5.43	6.00	5.49
Dist. recreation area		-13.15	-16.99	-14.69
Quality of location		-70.91	-51.33	-69.86

			Posterior based on		
Coefficient		Prior	non-informative prior	informative prior	
		(2009)	(2010)	(2010)	
Intercept	β_0	820.56	740.13	836.59	
Standard land value	β_1	8.67	15.12	9.13	
Age	β_2	-3.36	-3.29	-3.33	
Area of living space	β_3	5.49	5.40	5.50	
Dist. recreation area	β_4	-14.69	-11.59	-13.17	
Quality of location	β_5	-69.86	-74.49	-80.71	

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Rea Estate Valuation

Practical Results

Conclusion

Practical results: Confidence regions - HPDI (coefficients)

Results for the posterior solution 2009

 Blue color: Result of informative solution
 ---: 95 % HPDI

 Red color: Result of non-informative solution
 ---: 95 % HPDI

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Rea Estate Valuation

Practical Results

Conclusion

Practical results: Confidence regions - HPDI (2009)

Area of living space $\overline{\beta}_3$:

Dist. to recreation area $\overline{\beta}_4$:

Quality of Location $\overline{\beta}_5$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Rea Estate Valuation

Practical Results

Conclusion

Practical results: Confidence regions - HPDI (2010)

Dist. to recreation area $\overline{\beta}_4$:

Quality of Location $\overline{\beta}_5$:

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Rea Estate Valuation

Practical Results

Conclusion

Practical results - Prediction

- Leave-one-out cross validation
- Margin: difference of upper and lower boundary of confidence regions
- Margin of confidence regions 2009 (left) and 2010 (right)

- 2009: 132 predicted values; 2010: 184 predicted values
- 2009: Mean increase of 12.1 %, corresponding to about 100 €/qm
- 2010: Mean increase of 11.6 %, corresponding to about 150 €/qm

GIH

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Rea Estate Valuation

Practical Results

Conclusion

- Recursive Bayesian approach implemented successfully to issues of real estate valuation
- Integration of empirically derived prior knowledge enables

... the possibility of **quantifying the uncertainty** of single variables

... the **reduction of uncertainty** concerning the estimation of parameters and the prediction of comparative values

- Future goals of research:
 - · Introduction of weights for the influence of passed periods
 - Improvement of functional model

GIH

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Rea Estate Valuation

Practical Results

Conclusion

- Recursive Bayesian approach implemented successfully to issues of real estate valuation
- Integration of empirically derived prior knowledge enables

... the possibility of **quantifying the uncertainty** of single variables

... the **reduction of uncertainty** concerning the estimation of parameters and the prediction of comparative values

- Future goals of research:
 - · Introduction of weights for the influence of passed periods
 - Improvement of functional model

Contact

Propagating the uncertainty of the market value by the use of a Bayesian regression approach

Zaddach & Alkhatib

Motivation

Theory of Multiple Linear Regression Analysis

The Bayesian Approach in Rea Estate Valuation

Practical Results

Conclusion

Thank you for your attention!

Dipl.-Ing. Sebastian Zaddach

Leibniz Universitaet Hannover Geodetic Insitute Land and Real Estate Management

Nienburger Str. 1 Hannover D - 30167 GERMANY

zaddach@gih.uni-hannover.de www.gih.uni-hannover.de

Dr.-Ing. Hamza Alkhatib

Leibniz Universitaet Hannover Geodetic Insitute Evaluation methods

Nienburger Str. 1 Hannover D - 30167 GERMANY

alkhatib@gih.uni-hannover.de www.gih.uni-hannover.de