3D Visualization through Planar Pattern Based Augmented Reality

- Dr. Charalabos Ioannidis, Professor of Photogrammetry
- Styliani Verykokou, Surveying Engineer, PhD student

XXV INTERNATIONAL FIG CONGRESS
"ENGAGING THE CHALLENGES, ENHANCING THE RELEVANCE" 16-21 JUNE 2014, KUALA LUMPUR, MALAYSIA

AUGMENTED REALITY - AR (1/4)

- Enriches reality with computer generated information
- Enhances people's perception of reality
- Adds mainly visual information in the real world, which has the dominant role
- Can potentially enhance all five senses
- Belongs to the technology of mixed reality (Milgram et al., 1994), according to which data that belongs to both the real and virtual world are presented as coexisting in the same place

Mixed Reality

AUGMENTED REALITY - AR (2/4)

AR Systems (Azuma, 1997):

1. Combine real and virtual objects in a real environment
2. Allow real-time interaction
3. Register virtual objects in the three-dimensional space

- 1968: $1^{\text {st }}$ AR system (Sutherland)
- 1992: the term "augmented reality" was coined (Caudell \& Mizell)
- TODAY: applications in various fields

$$
\begin{array}{|l|l|l|l|}
\hline \text { Medicine } & \text { Education } & \text { Navigation } & \text { Architecture - interior design } \\
\hline
\end{array}
$$

XXV International Federation of

AUGMENTED REALITY - AR (3/4)

AR Applications in the field of surveyor

- Virtual reconstruction of half-ruined buildings, statues, or archaeological sites \rightarrow real-time integration of their 3D models into the real world
- Visualization of constructions during their design phase
- Navigation (combination of AR and location-based services)

AUGMENTED REALITY - AR (4/4)

APPLICATION DEVELOPED

- Application: Planar pattern based markerless AR application
- Purpose: Visualization of the 3D anaglyph of a region through the screen of a PC, without the need of a 3D print-out of its DTM
- Methodology:
- Initial data:
- a pattern image
- a 3D augmentation model in OBJ format
- the interior orientation of the computer camera
- Calculation of the exterior orientation of every video frame
- Right rendering of the 3D model on a computer window whereby the background is the video frame

CASE STUDY

- Pattern image: a photograph of a printed orthoimage that depicts an area ($18 \mathrm{~km} \times 12 \mathrm{~km}$) around the artificial lake of the river Ladonas in the Peloponnese, Greece
- Augmentation model: DTM of the region depicted in the orthoimage

CAMERA CALIBRATION

Fully automated approach by taking pictures of a planar chessboard pattern shown at different orientations, based on Zhang's (2000) and Bouguel's (2013) methods.

- Calibration of the camera of a laptop computer

Initial Data:

- Chessboard images
- Number of the
internal chessboard corners in the two directions

METHODOLOGY OF CAMERA CALIBRATION

- Initial processing of each image
- Check whether the chessboard pattern can be recognized in each image
- Detection of the internal chessboard corners if that check is positive
- Computation of the object coordinates of the internal corners of the chessboard
- Estimation of the initial camera interior orientation
- Computation of the approximate camera exterior orientation for each image, if the chessboard pattern is detected
- Final computation of the camera interior parameters and the camera exterior parameters for each image, using the LevenbergMarquardt optimization algorithm (Levenberg, 1944; Marquardt, 1963), for the minimization of the reprojection error.

DEFINITION OF THE COORDINATES OF THE PATTERN OBJECT

- Origin: the center of the orthoimage
- X and Y coordinates are derived from the normalized width and height of the pattern image \rightarrow within the range of $[-1,1]$
- $Z=0$

$$
\mathrm{W}=\frac{\text { width }}{\max (\text { width, height })} \quad \mathrm{Ka} \mathrm{\prime} \quad \mathrm{H}=\frac{\text { height }}{\max (\text { width, height })}
$$

FEATURES EXTRACTION

Features extraction in the pattern image and in every video frame

SURF: Speeded-Up Robust Features (Bay et al., 2006)

- Scale invariance
- Rotation invariance
- Skew
- Anisotropic scaling
- Perspective effects

2 1. Features detection
steps
2. Features description

Detection of interest points located in blob-like structures of the image

METHODOLOGY OF SURF (1/2)

1. Features Detection

Based on the determinant of an approximation of the Hessian Matrix, which is computed for every pixel of the image in all scale levels of each octave into which scale space is divided

METHODOLOGY OF SURF (2/2)

2. Features Description

Computation of a 64-dimensional vector for each interest point \rightarrow descriptor

Indicates the underlying intensity structure of a
 square region around the interest point, oriented along its dominant orientation

MATCHING (1/2)

Matching criterion: Euclidean distance between the descriptors of the feature points
\& Minimization of the outliers \rightarrow cross-check test

Two feature points i and j are matched if:

- the nearest neighbor of the descriptor of point i in the pattern image is the descriptor of point j in the video frame
AND
- the nearest neighbor of the descriptor of point j in the video frame is the descriptor of point i in the pattern image

MATCHING (2/2)

Many outliers still remain!

- Definition of a maximum accepted Euclidean distance
- The correspondences are rejected if the Euclidean distance between the descriptors of the matched features points is above that threshold

A few incorrect matches are not detected rejection via RANSAC

RANSAC FOR THE REJECTION OF OUTLIERS

RANSAC: RANndom SAmple Consensus (Fischler \& Bolles, 1981)

- Generally: Computation of the parameters of a mathematical model using a data set, which may contain many errors, relying on the use of the minimum number of data.
- In the application: Rejection of the outliers via the computation of the 2D homography between the pattern image and each video frame

RANSAC is applied if at least 5 matches are detected.
Otherwise: the orthoimage is not recognized in the frame \rightarrow the scene is not augmented

ITERATIVE PROCEDURE FOLLOWED BY RANSAC

- A sample of 4 matches is randomly chosen from all matches
- The homography is estimated using the random sample
- The number of valid matches (inliers) is calculated for the above solution
- 3 cases:
- inliers \geq threshold \rightarrow the model is accepted and the algorithm terminates with success
- inliers < threshold \&
number of iterations $=$ maximum number of iterations \rightarrow the algorithm terminates with failure
- inliers < threshold \&
number of iterations < maximum number of iterations \rightarrow these steps are repeated

HOMOGRAPHY ESTIMATION

Initial homography estimation via RANSAC using the best set of four matches

It is refined using the set of all inliers via a nonlinear optimization using the Levenberg-Marquardt algorithm

If inliers $\geq \mathbf{5}$: the orthoimage is detected in the video frame Otherwise: the scene is not augmented

RESULT

OUTLIERS REJECTION VIA RANSAC

Matches before the rejection of the outliers by RANSAC

PATTERN RECOGNITION

- Computation of the pixel coordinates of the four corners of the pattern object in the video frame

$$
\left[\begin{array}{c}
x_{\text {frame }}^{\prime} \\
y_{\text {frame }}^{\prime} \\
w_{\text {frame }}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x_{\text {pattern }} \\
y_{\text {pateern }} \\
1
\end{array}\right] \quad \begin{aligned}
& x_{\text {frame }}=x_{\text {frame }}^{\prime} / w_{\text {frame }}^{\prime} \\
& y_{\text {fiame }}=y_{\text {frame }}^{\prime} / w_{\text {frame }}^{\prime}
\end{aligned}
$$

CAMERA EXTERIOR ORIENTATION ESTIMATION (1/4)

Camera interior orientation

Pixel coordinates of the four corners of the pattern object in the video frame

Object coordinates of the four corners of the pattern object

Rotation

Translation

Object Coordinate System

CAMERA EXTERIOR ORIENTATION ESTIMATION (2/4)

Mathematical model: Projection transformation

$$
\lambda \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
c_{x} & 0 & x_{0} \\
0 & c_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right] \cdot\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Camera matrix

 K Homogeneous coordinatesJoint rotationtranslation matrix [R|t]
$\mathrm{c}_{\mathrm{x}}=\mathrm{C} /$ width $_{\text {pixel }}$,
$\mathrm{c}_{\mathrm{y}}=\mathrm{c}^{\prime}$ height $_{\text {pixel }}$
x_{0}, y_{0} : pixel
coordinates of the principal point
s: skewness
r_{ij} : elements of the rotation matrix
t_{i} : elements of the translation vector
x, y : pixel
coordinates
X, Y, Z: ground
coordinates

CAMERA EXTERIOR ORIENTATION ESTIMATION (3/4)

- Linear computation of the approximate elements of the joint rotation-translation matrix using:
- the homography that relates the planar object coordinates and the pixel coordinates of the corners of the orthoimage after their undistortion
- the camera interior orientation

$$
\begin{gathered}
r_{1}=\lambda \cdot K^{-1} \cdot h_{1} \\
r_{2}=\lambda \cdot K^{-1} \cdot h_{2} \\
r_{3}=r_{1} \times r_{2}
\end{gathered}
$$

$$
\begin{aligned}
& \lambda=\frac{1}{\left\|K^{-1} \cdot h_{1}\right\|} \\
& t=\lambda \cdot K^{-1} \cdot h_{3}
\end{aligned}
$$

CAMERA EXTERIOR ORIENTATION ESTIMATION (4/4)

- Calculation of the Singular Value Decomposition (SVD) of the rotation matrix \mathbf{R} and recalculation of \mathbf{R} in order to satisfy the orthogonality condition

$$
\mathbf{R}=\mathbf{U} \cdot \mathbf{W} \cdot \mathbf{V}^{\top} \longrightarrow \mathbf{W}=\mathbf{I} \longrightarrow \mathbf{R}=\mathbf{U} \cdot \mathbf{V}^{\top}
$$

- Conversion of R into a 3D rotation vector via Rodrigues formula
- Parallel to the rotation axis
- Magnitude equal to the magnitude of the rotation
- Levenberg-Marquardt optimization in order to refine the translation and rotation vectors

RENDERING OF THE AUGMENTED SCENE (1/4)

2 steps:

1. Rendering of the video frame on a computer window, so that it forms its background
2. Rendering of the DTM on that window

The coordinates of the vertices of the DTM are defined in a local coordinate system \neq object coordinate system

They are transformed into the object coordinate system by being normalized into the range of $[-1,1]$
$\left[\begin{array}{c}X_{\text {CAMERA }} \\ Y_{\text {CAMERA }} \\ Z_{\text {CAMERA }} \\ 1\end{array}\right]=\left[\begin{array}{cccc}r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{c}X_{\text {MODEL }} \\ Y_{\text {MODEL }} \\ Z_{\text {MODEL }} \\ 1\end{array}\right]$
XXV International Federation of
Surveyors Congress, Kuala Lumpur,
Malaysia, 16-21 June 2014

RENDERING OF THE AUGMENTED SCENE (2/4)

Definition of

 the viewing volumeIt determines how the DTM is projected into the final scene

The normalized object coordinates are transformed into the camera system (viewing transformation)

RENDERING OF THE AUGMENTED SCENE (3/4)

RENDERING OF THE AUGMENTED SCENE (4/4)

> The orthoimage is draped on the DTM for a realistic representation of the anaglyph

Texture Mapping

Development of the Application

- Programming language: C++
- OpenCV library (Open source Computer Vision Library)
- OpenGL API (Open Graphics Library)

libraries	$>$ OpenGL Core Library
	$>$ GLU
	$>$ Freeglut
	$>$ GLEW

- GLM: An Alias Wavefrnt OBJ file Library
\& The application is intended for computers running Microsoft Windows

RESULTS

Thank you for your attention!

