

Agricultural Forest Applications and Boundary Surveys Using Low-cost High Sensitivity GPS (HS-GPS) Receivers

Severin Heuboeck and Guenther Retscher Department of Geodesy and Geoinformation Vienna University of Technology

Motivation

- GNSS use in forests
 - Logistic chains for wood processing
 - Machine guidance
 - GIS
 - Boundary survey
 - Leisure activities
 - Navigation

Advantages of HS-GPS

3

- Weaker signals can be detected due to:
 - Integration time < 1ms
 - Detectable signal strength > -180dBW
- Higher availabity in urban canyons or forests

and / or

- Higher positioning accuracy
- Possibility to store raw data
- More processing power
- GNSS ability

20.06.2014 XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 21 June 2014

Typical signal propagation in forests

Signal is:

- scattered
- damped
- reflected
- delayed

Each gain in availibility may result in a loss of accuracy

20.06.2014

Study Goals

5

Evaluation of performance and practicability of single frequency HS-GPS receiver under forest canopy

- Code Single Point Positioning (SPP)
- Single Frequency Baseline Measurement to a virtual reference station in a CORS network

20.06.2014

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 21 June 2014

Test Area and Equipment

- Mixed forest near Vienna
- Forest classification:
 - Broad-leaved forest
 - Needle forest
 - Young forest
- 10 control points
- 1 reference point under open sky
- Low-cost receiver: u-blox LEA-6T
 - 2 Mio. correllators
 - TTFF < 1 sec.
 - Signal acquisition down to -178 dBW

Supported by:

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 - 21 June 2014

Field Tests

- Observations over a whole vegetation cycle
- 3 campaigns:
 - Early summer
 - Autumn
 - Winter
- Measurement duration: 24h
- Data storage on laptop

20.06.2014

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 - 21 June 2014

Results Code SPP

7

• SPP with receiver software

Summer	Broad-	leaved	Nee	edle	Young forest		
[m]	horiz.	vert.	horiz.	vert.	horiz.	vert.	
Mean	0.66	12.91	0.42	11.45	0.87	4.38	
Std. dev.	8.31	10.19	7.90	9.39	7.45	8.24	

- Standard deviation: ~ 8 m (horizontal)
- Height deviations are much higher
- Useable for navigation

50	5.55	7.45	0.24					
Autumn		Broad-	leaved	Nee	edle	Young forest		
	[m]	horiz.	vert.	horiz.	vert.	horiz.	vert.	
N	lean	1.97	15.80	1.09	13.82	2.23	8.34	
Std	. dev.	7.54	8.81	7.13	8.19	7.42	7.78	

- Strongest influences of the foliage in young forest
- Dry leaves influence more than fresh soaked leaves

Winter	Broad-	leaved	Nee	dle	Young forest		
[m]	horiz.	vert.	horiz. vert.		horiz.	vert.	
Mean	0.18	14.07	0.58	8.98	0.65	4.82	
Std. dev.	7.38	8.93	5.95	7.19	5.27	5.99	

Differential Observations with varying observation times

Summer	15 min.		30 min.		1 h		2 h		3 h		6 h	
[m]	horiz.	vert.	horiz.	vert.	horiz.	vert.	horiz.	Vert.	horiz.	vert.	horiz.	vert.
Mean	1.06	12.19	3.50	-7.43	2.29	1.32	3.36	-15.96	3.77	-11.545	2.63	6.39
Std. Dev.	254.42	471.44	148.97	345.83	39.11	164.32	43.92	208.7	53.23	254.367	31.44	41.71
Median	0.16	1.77	0.14	1.54	0.07	1.52	0.07	1.33	0.02	1.124	0.03	1.07
IQR	4.32	6.13	4.67	6.03	4.97	6.28	4.93	4.63	3.49	5.684	4.02	4.28

- Many outliers cause high standard • deviations
- No normal distribution •
- Median and interguartile range show • the possibilities of baseline solutions
- Percentage of phase solutions (red) in high forest max. 12 %
- Float solutions (blue) are dominant
- Nearly no code solutions (green) • 20.06.2014

Analysis of phase and float solutions

Performance in different seasons

Lower percentage of phase solutions in autumn

Different behaviour of phase and float solutions in broad-leaved forest

11

20.06.2014

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 21 June 2014

Conclusions and Outlook

13

- Code SPP is useable for navigation (height critical)
- Single frequency baseline observations are possible but highly affected by the canopy
- In average only half of the satellite observations are useable for positioning
- By the increasing number of GNSS
- satellites the performance of relative positioning in forests is expected to be higher
- Evaluation of different geodetic and navigation receivers is under progress

20.06.2014

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16-21 June 2014

