Slip Rates Estimate of Western North Anatolian Fault System in Turkey

Haluk Ozener, Asli Dogru, Bahadir Aktug, Semih Ergintav, Bulet Turgut, Onur Yilmaz, Kerem Halicioglu, Asli Sabuncu, Onur Gurkan

Bogazici University
Kandilli Observatory & Earthquake Research Institute,
Geodesy Department, Turkey

Tectonic Settings of Turkey
GPS measurements have been performed since 1994.

The wesward migration earthquakes since 1939 along the North Anatolian Fault
The map displays the seismicity and the focal mechanisms of devastating earthquakes in the region.

Data Processing and Analysis

Number of stations at each network:

<table>
<thead>
<tr>
<th>Network</th>
<th>Iznik</th>
<th>Sapanca</th>
<th>Akyazi</th>
<th>Ismetpasa</th>
<th>Iznik-GCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Fieldworks at Geodetic Networks

Data Processing and Analysis

<table>
<thead>
<tr>
<th>Networks</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iznik</td>
<td>X</td>
</tr>
<tr>
<td>Iznik-GCM</td>
<td>X</td>
</tr>
<tr>
<td>Sapanca</td>
<td>X</td>
</tr>
<tr>
<td>Akyazı</td>
<td>X</td>
</tr>
<tr>
<td>İsmetpaşa</td>
<td>X</td>
</tr>
</tbody>
</table>

The table displays the observation spans of the networks.
Details of measurement and process steps

- Equipment
- 10-hour/day
- The elevation mask 10°
- Logging 15 sec.
- GAMIT/ GLOBK
- ITRF2008.
- Precise orbit, IGS , SP3 (Standard Product 3) from SOPAC
- Earth Rotation Parameters (ERP) came from USNO_bull_b
- 9-parameter Berne model—radiation and the pressure.
- Scherneck model for the ocean tide loading effect.
- Zenith Delay unknowns Saastamoinen a priori standard troposphere model with 2-hour interval.
- Iono-free LC (L3) linear combination of L1&L2 carrier phases
- The model which depended on the height for the phase centers of the antennas.

The map shows the horizontal velocity field of networks in Eurasia-fixed reference frame. (with 95% confidence ellipses). Black line displays the North Anatolian Fault.
Strain Analysis

- Strain is the key element in order to understand the seismic hazard analysis.
- We analyzed periodic GPS observations of these networks to derive velocity vectors and principal components of crustal strain rates.
- In this study, strain rates are calculated only \textit{Iznik-GCM} network.

<table>
<thead>
<tr>
<th>Lon.(o)</th>
<th>Lat.(o)</th>
<th>ε1 (10^{-9} y^{-1})</th>
<th>ε2 (10^{-9} y^{-1})</th>
<th>Azimuth (o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.8057</td>
<td>40.4550</td>
<td>0.989E+02</td>
<td>-1.009E+02</td>
<td>50.1002</td>
</tr>
<tr>
<td>29.7326</td>
<td>40.4393</td>
<td>-0.209E+02</td>
<td>-1.458E+02</td>
<td>77.7694</td>
</tr>
<tr>
<td>29.8928</td>
<td>40.4384</td>
<td>-0.491E+02</td>
<td>-1.110E+00</td>
<td>29.6059</td>
</tr>
<tr>
<td>29.7743</td>
<td>40.3984</td>
<td>-0.159E+02</td>
<td>-0.824E+02</td>
<td>-41.4508</td>
</tr>
<tr>
<td>29.8290</td>
<td>40.3491</td>
<td>0.634E+02</td>
<td>-0.187E+02</td>
<td>48.3211</td>
</tr>
<tr>
<td>29.9543</td>
<td>40.3640</td>
<td>0.634E+02</td>
<td>-0.802E+02</td>
<td>46.4050</td>
</tr>
</tbody>
</table>

Iznik-GCM
Results

- The Iznik map of horizontal deformation shows that southern branch of western NAF is without the presence of significant tectonic deformation. North and south parts of the fault move toward southwest relative to Eurasia with the same rate.

- Although spatial coverage within Sapanca is relatively low, obtained velocities ranged between 6.70±1 and 17.90±1 mm/y.

- The southern part of this fault branch seems to agree with the expected rate which is higher than the upper part.

Results

- Site velocities in Akyazi network are consistent with limits of 18.30-22.80±1 mm/y.

- NAF splays into two branches here. Site velocities reflect the movements of different segments.

- For the Iznik-GCM network, velocities varies between 21.60±1 and 24.00±1 mm/y. The maximum strain rate is 98 nstrain/y agreeing with the region tectonics.

- The largest magnitude of horizontal velocities relative to Eurasia detected at GPS sites at western Black Sea (Ismetpasa) is 19.70±1 mm/y and relative to a northern GPS site (ISP2) is 7.83±1 mm/y. So that the creep rate from 2005 is approximately 7 mm/y.
New Studies

Creepmeter on the North Anatolian Fault

Installed creepmeters will be a powerful tool to search the possibilities of the transient or episodic creep and they can validate the results of ongoing monthly InSAR and campaign GPS studies, along NAF.
Creepmeter

5 W 12 V solar panel mounted on 2’x4’ roof

Iridium antenna

Constant tension motor measurement wheel

Fault zone

Expansion joint

Cement

14 mm diameter stainless-steel rods

0.4 m

2 m

7.5 m

8 m
Creepmeter Specifications

- The creepmeters have a resolution of 5 µm and a range of 2.2 m.
- Each creepmeter uses two sensors: a subsurface LVDT (resolution 5 µm range 2.2 mm) and an above-ground rotary Hall effect sensor (resolution 25 µm and range 2.2 m) and their data are transmitted via the Iridium satellite as 30 minute samples every 2 hours.
- Their ability to capture slow slip, coseismic rupture or afterslip has been tested in deployments on the rapidly creeping landslides (1-3 mm/day) in the US.

Sensors

- Data logger
- Iridium data transfer card
- Battery and solar panel unit
- Heat probe
- Rotary engine
Field studies and maintenance
Strainmeter

Determination of deformation < 1mm
Slow Earthquake

(Slow slip Event/Episodic Tremor Slip)

- new concept for earthquake studies.
- Between aseismic slip and earthquake.
- It is believed that, it triggers earthquakes and happened before the large events.
- It can not be identified by sismometer and accelerometer.
- It happens in deep and very slowly, months or years.

This kind of earthquake can be detected just by geodetic techniques.
Why use strainmeter?

![Diagram showing the use of strainmeters in geophysics.](image1)

![Map showing the PBO Network and various GPS monitoring points.](image2)
Borehole Geodetic Monitoring in Marmara Region

Selection of sites
Office and field studies

Our team studied on the geology map of Marmara region to find suitable places for drilling. Then a field trip was carried out for reconnaissance.

Borehole Installation İstanbul-2014
A typical installation starts with a borehole that is 15 cm in diameter and approximately 200 m deep, the actual depth depends on the location of desirable rock.

Borehole equipments

Borehole strain sensitive to deformation in the range of less than a month. With respect to integration with GPS arrays, the system has significant contribution in increasing the resolution of top end differential GPS mapping of earth deformation.
Instrument used

| Strainmeter | Seismometer | Pore pressure |

Data Transfer
Seismic data are collected by seismometers installed in the boreholes

http://strainistanbul.org/
Thank you for interest and attention

ozener@boun.edu.tr