THE GRAVIMETRIC QUASIGEOID MODEL OVER UGANDA

Ronald Ssengendo1,2 Lars E. Sjöberg1 & Anthony Gidudu2

1 Royal Institute of Technology (KTH), Sweden
2 Makerere University, Kampala, Uganda

INTRODUCTION

• Need for geoid/quasigeoid model? --- GNSS-HEIGHT DETERMINATION

\[N = h - N' \]
\[h = \zeta + \phi \]

- Adverseometric height
- Geoidal height
- Normal height
-

\[\zeta \] - height anomaly/quasigeoid height
INTRODUCTION

Quasigeoid determination

• Directly using Stokes formula/modification

\[\zeta_f = \frac{R}{4 \pi \sigma} \int \int S(r, \varphi) \Delta g \, d\sigma \]

• Indirectly

\[\zeta_f = N_f + (\zeta - N) \]

\((\zeta - N) \) = quasigeoid-geoid separation

INTRODUCTION

Quasigeoid determination

• Based on the Uganda Gravimetric Geoid Model 2014—KTH method

\[\bar{N}_{L, M} = \frac{R}{4 \pi \sigma} \int \int S(\sigma) \Delta g \, d\sigma + \sum_{k=0}^{M} \left(Q_{g, k}^L + s_k \right) \Delta g_{\text{GGM}}^{\text{GGM}} + \]

\(\Delta N_{\text{comb}} \) + \(\Delta N_{\text{mod}} \) + \(\Delta N_{\text{ref}} \) + \(\Delta N_{\text{m}} \)

\(\sigma \) = spherical cap

\(R \) = mean Earth radius

\(\gamma \) = mean normal gravity on reference ellipsoid

\(S(\sigma) \) = modified Stokes' function

\(M \) = maximum degree of GGM

\(L \) = maximum degree of modification

\(Q_{g, k} \) = Molodensky truncation coefficients
Data used for the determination of the geoid model

- 7,839 terrestrial gravity data from BGI
- World Gravity Map 2012 surface gravity anomalies – BGI
- SRTM3 DEM—CGIAR-CSI
- GOCE-only GGM—GO_CONS_GCF_2_TIM_R5 (maximum degree=280)
- 10 GNSS/levelling points

Internal & external accuracy assessment of UGG2014

- Internal accuracy= 11.5 cm
- External accuracy before & after 4-parameter fitting = 11.6 cm and 7.4 cm
Determination of the quasigeoid-geoid separation

- Approximate formula (Heiskanen & Moritz, 1967)

\[\zeta - N = \frac{\Delta g_\omega H}{\gamma_n} \]

\(\Delta g_\omega \) = Bouguer gravity anomaly

\(H \) = topographic height (SRTM3)

\(\gamma_n \) = normal gravity at latitude 45°

- Strict formula (Sjöberg, 2006; 2010)

\[\zeta - N = \frac{T(r_p, \Omega)}{\gamma_0(\phi)} - \frac{V'_{\text{quad}}(r_p, \Omega)}{\gamma_0(\phi)} + \frac{V_{\text{quad}}(r_p, \Omega)}{\gamma(\Omega)} \]

<table>
<thead>
<tr>
<th>Formula</th>
<th>Min.</th>
<th>Max.</th>
<th>Mean</th>
<th>Std.</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate</td>
<td>-0.08</td>
<td>0.72</td>
<td>0.16</td>
<td>0.08</td>
<td>0.17</td>
</tr>
<tr>
<td>Strict</td>
<td>-0.05</td>
<td>3.35</td>
<td>0.17</td>
<td>0.19</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- Topographic bias in the strict formula --harmonic series expansion

\[V'_{\text{quad}}(r_p, \Omega) = 2\pi G \rho \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left(H_{n0}^m + \frac{2}{3R} H_{n1}^m \right) \gamma_n(\Omega) \]
Topographic bias over Uganda

UGQ2014 & its evaluation

\[\zeta_p = N_p + (\zeta - N) \]

GNSS/levelling residuals over 10 points before and after the 4-parameter fit (units: cm)

<table>
<thead>
<tr>
<th>Formula</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std.</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>2.56</td>
<td>51.41</td>
<td>24.10</td>
<td>12.74</td>
<td>29.96</td>
</tr>
<tr>
<td>After</td>
<td>-20.46</td>
<td>13.80</td>
<td>0.0</td>
<td>10.90</td>
<td>10.34</td>
</tr>
<tr>
<td>Strict</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>-30.54</td>
<td>14.56</td>
<td>-9.29</td>
<td>13.18</td>
<td>15.57</td>
</tr>
<tr>
<td>After</td>
<td>-9.96</td>
<td>12.91</td>
<td>0.0</td>
<td>6.65</td>
<td>6.31</td>
</tr>
</tbody>
</table>
Conclusion

- Standard errors of ellipsoidal heights = 2.2 cm
- Standard errors of normal-orthometric heights = 1.0 cm
- Standard error of UGQ2014 before & after fitting are 15.4 cm and 5.8 cm
- Satisfactory given the poor quality & quantity of terrestrial gravity data
- Comparison of approximate & strict formulas shows that --- introduce errors of 2.6 m in the QGGS --- 35 cm in the final quasigeoid heights
- Future work ---
 - GNSS/levelling observations to create a more homogeneous dataset
 - Government– airborne gravimetry for better quality gravity data
THANK YOU FOR YOUR ATTENTION

ROYAL INSTITUTE OF TECHNOLOGY
Division of Geodesy & Satellite Positioning
100 44 Stockholm Sweden
https://www.kth.se/en
E-mail: ssronald@kth.se