Performance Assessment and Calibration of the Kinect 2.0 Time-of-flight Range Camera for Use in Motion Capture Applications

Presentation by: Jeremy Steward
Authors: Jeremy Steward, Dr. Derek Lichti, Dr. Jacky Chow, Dr. Reed Ferber, Sean Osis

Motivation

- 3D geometric information is increasingly used
 - Deformation analyses
 - Pre-mission or as-built surveys
 - Motion capture
- Time-of-flight (ToF) range cameras offer several advantages
 - Single sensor (thus, often cheaper)
 - Do not require retro-reflective targets or markers
 - Video framerate
Microsoft Kinect 2.0 Sensor

- Provides an affordable (≈ $200 USD) ToF ranging sensor with a large image resolution (512 x 424)
- Effective range of approximately 5 m with a framerate of 30 FPS
- Necessary to quantify the performance characteristics of the sensor in order to use it.

Experiments

- Performed in a temperature controlled room at the University of Calgary
- Kinect 2.0 set at fixed distances away from reflective plates (white and black Spectralon)
- Large field of targets used for self-calibration
Sensor Warm-up Time

Distance and Reflectivity
Self-Calibration for Systematic Errors

<table>
<thead>
<tr>
<th>Residuals</th>
<th>Before Calibration</th>
<th>After Calibration</th>
<th>Percent Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>x [pix]</td>
<td>1.98</td>
<td>0.26</td>
<td>87%</td>
</tr>
<tr>
<td>y [pix]</td>
<td>2.43</td>
<td>0.26</td>
<td>89%</td>
</tr>
<tr>
<td>range [mm]</td>
<td>66.1</td>
<td>12.6</td>
<td>81%</td>
</tr>
</tbody>
</table>

Conclusions

- Sensor has negligible warm-up time compared to other ToF cameras on market
- Precise motion capture with the Kinect 2 is possible, with some considerations
 - Ideal range at 1.0 m – 2.5 m
 - Highly reflective targets are desirable
 - See full paper for more details
- Calibration for interior systematic effects can produce significant (> 81%) improvement on residuals
Self-Calibration – Additional Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_p [pix]</td>
<td>-4.74</td>
<td>0.15</td>
</tr>
<tr>
<td>y_p [pix]</td>
<td>-3.48</td>
<td>0.14</td>
</tr>
<tr>
<td>c [pix]</td>
<td>366.45</td>
<td>0.23</td>
</tr>
<tr>
<td>k_1 [pix$^{-1}$]</td>
<td>6.518×10^{-7}</td>
<td>9.536×10^{-9}</td>
</tr>
<tr>
<td>k_2 [pix$^{-4}$]</td>
<td>-1.226×10^{-11}</td>
<td>9.562×10^{-14}</td>
</tr>
<tr>
<td>d_0 [mm]</td>
<td>-16.9</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Vignette Effect