Martin Lide

Martin Lidberg¹, Per Jarlemark², Kent Ohlsson¹, Jan M Johansson^{2,3} ¹Lantmäteriet, ²SP Technical research Institute of Sweden, ³Chalmers University of Technology

Martin.Lidberg@lm.se

FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

LANTMÄTERIET

CHALMERS

Diamond Partner

Land Information New Zealand Toitū te whenua

Platinum Partners

Summary

- Station dependent effects at CORS is • a limiting error source for future developments of GNSS applications
- Individual antenna calibration is not • sufficient (PCV/PCO change when installed to a monument)
- Our real-time users asks for sub-cm • uncertainty also in height
- On-site station calibration is feasible • and results are presented here
- Lots of details to improve and • develop further

Platinum Partners:

Diamond Partner

esr

Land Information ew Zealand

Motivation – users asking for improved performance

Platinum Partners:

Land Information New Zealand

The field calibration setup

Radome

Antenna

Tribrach

Metal plate

Platinum Partners:

Trimble.

Method and principles for the field calibration

- The physical height difference between the monument, and the antennas on tripod are determined using terrestrial methods
- Three reference antennas on tripods allow for gross error detection and some noise error reduction
- 5 days continuous observations
- Microwave absorbing material at the reference antennas reduce the effect from multipath (but questionable?)

- Phase residuals in baseline between reference antenna on tripod and the CORS are considered to be caused by limitations in the CORS installation
- Booth the concrete pillar monument from 1993, as well as the truss mast monument from 2012 are considered

Platinum Partners:

Trimble.

Results – field calibration of 9 SWEPOS pillar stations (2009, 2010)

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

★ L1 ★ L2

Apply "monument specific" PCV and PCO model and compare

Station	Original antenna		Updated		
	model		antenna model		
	L1 vertical offset (mm)	L2 vertical offset (mm)	L1 vertical offset (mm)	L2 vertical offset (mm)	2 1.5
Östersund	2.6	3.2	2.2	1.9	
Sundsvall	-0.3	0.4	-0.8	-0.9	g 0.5
Leksand	1.5	3.3	0.2	1.4	
Karlstad	1.1	1.0	0.7	-0.3	
Vänersborg	-0.3	0.9	-0.7	-0.3	-0.5-10-10-10-10-10-10-10-10-10-10-10-10-10-
Norrköping	-0.3	1.6	-0.7	0.4	
Jönköping	-0.6	0.6	-1.0	-0.6	ž -1
Oskarshamn	0.8	1.8	0.5	0.6	-1.5
Hässleholm	-0.7	0.4	-1.0	-0.8	2
Mean	0.4	1.5	-0.1	0.2	10 20 30 40 50 60 70
Std	1.1	1.1	1.1	1.0	

Platinum Partners:

Trimble.

L

Land Information

ew Zealand

80

90

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

L3t solution: lonosphere free obs. and Solve for troposphere

Station	Original ar	ntenna Model	Updated antenna model		
	Vertical offset (mm)	Atmospheric delay offset (mm)	Vertical offset (mm)	Atmospheric delay offset (mm)	
Östersund	-10.4	3.6	2.4	0.1	
Sundsvall	-13.6	3.5	-1.4	0.2	
Leksand	-9.2	2.4	-1.4	-0.1	
Karlstad	-7.0	2.4	4.7	-0.8	
Vänersborg	-13.6	3.5	-2.1	0.4	
Norrköping	-14.1	3.1	-2.6	0.0	
Jönköping	-15.7	4.0	-4.2	0.8	
Oskarshamn	-12.3	3.5	-0.8	0.3	
Hässleholm	-13.0	3.2	-1.5	0.1	
Mean	-12.1	3.2	-0.8	0.1	
Std	2.6	0.5	2.5	0.4	

Platinum Partners:

Trimble.

Diamond Partner

esri

Land Information lew Zealand

New monuments with LEIAR25.R3 + LEIT installed in 2012

Platinum Partners:

Land Information New Zealand

Diamond Partner

Calibrating the 19 steel-grid-masts from the pillar monuments

The LEIAR25.R3 + LEIT at the new mast monument calibrated relative to the pillar

Vertical offset from simulated L3t solution: Mean: -11.5 nm, Std: 5.0 mm (19 sites)

Platinum Partners:

Strimble.

esr

w Zealand

Checking the models from re-calibration at 6 sites in 2015

The pillar monuments. Vertical offset in L3t; mean:2.3 mm, std: 3.5 mm

The mast monuments: Vertical offset in L3t; Mean: 1.5 mm, Std: 6.9 mm

Platinum Partners:

Trimble.

Diamond Partner

esr

Discussion

- Users ask for better performance also in height •
- On-site calibration of GNSS CORS is feasible! •
- Microwave absorbing material at the reference antennas reduce ۲ the effect from multipath, but need further study
- Disturbance from vegetation at visiting antennas is a "growing" ۲ problem.

Platinum Partners:

Diamond Partner

esr

and Information w Zealand