

FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

Organised by

Platinum Partners

Diamond Partner

Land Information

COMPARISON BETWEEN MULTICOPTER UAV AND TOTAL STATION FOR ESTIMATING STOCKPILE VOLUMES

Cesar ARANGO and Daniel PAEZ

Colombia

Platinum Partners:

rs:

esri

Land Information New Zealand

Diamond Partner

from disaster

Platinum Partners:

Diamond Partner

Land Information New Zealand

Currently the UAV (Unmanned Aerial Vehicle) have become alternative for different engineering applications, an especially in surveying, one of these applications is the calculation of volumes of stockpiled material, but there are questions about its accuracy and efficiency

Platinum Partners:

esri

Land Information

The purpose of this investigation was compare the traditional surveying methods for estimating total volumes through data obtained by total stations and data obtained

by a multico

Platinum Partners:

🛞 Trimble 🛛 🎯 esri

Land Information New Zealand Toitū te whenua

FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

from disaster

METHODOLOGY

Data Acquisition

Total Station

Description	TS02plus	
1" angular accuracy	-	
Enhanced		
measurement	1.5 mm + 2	
accuracy to prism	ppm	
Reflectorless		
measurement range	500 m option	
Display with graphics		
and display	Black & White	
illumination	high resolution	

We set up the TST in different geo-referenced points (with GNSS) around the stockpile

Platinum Partners:

Diamond Partner

Land Information

ew Zealand

Flight configuration

	Flight duration (average of the two flights)	14 min
2 flights	Altitude above ground	50 m
	Speed of flight	2 m/s
	Speed of flight	2 m/s

We use the geo-referenced points (with GNSS) around the stockpile as ground control points (GCP), in order to calibrate the image before.

Platinum Partners:

METHODOLOGY

Volume Estimation with TST Data

We use a software methodology to calculate the volume of the stock pile, with the data obtained by the TST.

- 1. The data was downloaded to the in .shp format, (point cloud readable by ArcGIS)
- 2. "Create TIN" Tool (convert the point cloud into a representation of continuous surfaces)
- "Surface Volume" tool (calculates the volume of a TIN)

Platinum Partners:

Diamond Partner

from c

Land Information New Zealand Toitů te whenua

FIG Working Week 2016 Recover

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

METHODOLOGY

Volume Estimation with UAV Data

Pix4D software

- **1.** Draw a stockpile object
- 2. Change the manual tie points of the stockpile base to 3D GCPs
- **3.** Change the altitude of the 3D GCPs to the desired altitude of the volume base.
- 4. Open the *rayCloud* and select the stockpile object to get the new volume calculation.

Platinum Partners:

Land Information ew Zealand

m disaster

FIG Working Week 2016 Recover

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

METHODOLOGY

Volume Estimation with UAV Data

 $V_i = L_i * W_i * H_i$

Where:

 L_i = the length of the cell. W_i = the width of the cell. H_i = the height of the cell.

The lenght (Li) and Width (Wi) are equal to the project 's GSD.

 $L_i = W_i = GSD$

GSD= Ground Sample Distance

 $L_i = W_i = GSD$

GSD= Ground Sample Distance

 $H_i = Z_{Ti} - Z_{Bi}$

Where:

 Z_{Ti} = the terrain altitude of each cell at the center of the cell. Z_{Bi} = the base altitude of each cell at the center of the cell.

Therefore, the volume V_i of cell *i* is given by:

 $V_i = GSD * GSD * (Z_{Ri} - Z_{Ri})$

Platinum Partners:

Diamond Partner

esri

m disaster

Recovery

from disaster

RESULTS

Comparison of Stockpile Volumes

	Volume m ³	Error (+/-) m ³	Difference Volume m ³	Percentage	Percentage Difference
Actual	11500.00	n/a	-	-	-
TST	11831.20	n/a	331.20	102,88%	2.88%
UAV	11423.58	81.28	-76.42	99,34%	-0.67%

The difference of percentage shows that the volume obtained with **UAV data is more accurate** than the volume obtained with TST data.

Platinum Partners:

Diamond Partner

r 🌌

RESULTS

Time spent for data acquisition

Time taken for	TST	UAV
Setup equipment	5 minutes	5 minutes
Obtain data	3 hours	30 minutes

The table shows a clear difference between the two methods of data collection, the UAV is about 6 times faster than the TST

Platinum Partners:

esri

Conclusions

- There was a 2.88% difference between the volume calculated with the TST data and the actual volume, and -0.67% difference between the volume calculated with the UAV data and the actual volume
- The UAV is about 6 times faster than the TST
- Risks of obtaining the data with the UAV are much lower, this because people are not exposed to unstable locations.

Platinum Partners:

Diamond Partner

from disaster

esri

Land Information New Zealand Toitū te whenua