Stability analysis of a multi-camera photogrammetric system used for structural health monitoring

FIG Helsinki May 31, 2017

Ivan Detchev, Ayman Habib & Derek Lichti

Structural health monitoring

Fine-scale level:

- Measurement of deflections and cracks in structural components
- Provision of feedback for structural design improvements

Proposed photogrammetric systems

- Standing/upright system for crack observations
- Suspended/overhanging system for deflection measurements

In-situ multi-system calibration

- Series of rotations and translations of a portable
 2D test field
- Simultaneous estimation of interior orientation (IOPs) and camera mounting (CMPs) parameters

4

Research Group

May 31, 2017

System stability analysis

System stability methodologies

Concept:

 Numerical tool for checking the impact of different sets of calibration parameters

Methods:

- Method 1: combination of forward and backward projections
- Method 2: object space parallax in image space units
- Method 3: variation in normalized image coordinates

Method 1

Method 2 (1/2)

Method 2 (2/2)

Method 3 (1/2)

Variation in the normalized image coordinates

Method 3 (2/2)

Variation in the normalized image coordinates

Any changes in the magnitude/extent of the baseline would not be picked up

May 31, 2017

Digital Photogrammetry Research Group

Conducted tests

Simulation of changes in the IOPs and CMPs

- Method 1 vs. Method 2 comparison
- Method 3 vs. Method 2 comparison
- Decide which method works best in the most general case
- Real world tests
 - System stability analysis for a multi-day experiment
 - Same-day system stability analysis
 - Come up with recommendations on the frequency of calibration and/or locating any (source of) instability

Simulation of changes in IOPs & CMPs

- Biases applied one by one to each odd-numbered camera in a system
- Magnitude of biases chosen to cause noticeable instability

Parameters	Biases	Units
<i>x</i> _p , <i>y</i> _p , <i>c</i>	+50 or +100	[µm]
k ₁ , k ₂	+5x10 ⁻⁵ or +5x10 ⁻⁷	[mm ⁻²] or [mm ⁻⁴]
<i>p</i> ₁ , <i>p</i> ₂	+1x10 ⁻⁵	[mm ⁻¹]
b_X , b_Y , b_Z	+5	[mm]
$b_{\omega},b_{arphi},b_{\kappa}$	+0.1	[°]

Changes in the IOPs (1/2)

Parameters	Method 1	Method 2	Method 3
/ cam pairs	Total RMSE [px] for Cams 4 & 5		
None	0.00	0.00	0.00
Δx_p	8.76	8.96	8.98
Δy_p	8.76	8.95	8.91
Δc	5.25	5.43	5.47
Δk_1	4.85	4.95	5.03
Δk_2	5.15	5.17	5.26
Δp_1	0.27	0.28	0.29
Δp_2	0.16	0.17	0.17

Changes in the IOPs (2/2)

Parameters	Method 1		Method 2	Method 3	8
/ cam pairs	Total RMSE [px] for Cams 3 & 4				
None	0.00		0.00	0.00	
Δx_p	0.00		8.83	8.90	
Δy_p	0.00		8.82	8.84	
Δc	0.00		6.18	4.46	
Δk_1	0.00		2.84	2.91	
Δk_2	0.00		2.17	2.23	
Δp_1	0.00		0.18	0.19	
Δp_2	0.00		0.13	0.13	

Method 1 does not perform adequately in the scenario when the IOPs of the first camera are changed

Changes in the CMPs

Parameters	Method 1	Method 2	Method 3
/ cam pairs	Total RMSE [px] for Cams 3 & 4		
None	0.00	0.00	0.00
Δb_X	10.57	11.05	0.15
Δb_Y	10.62	10.89	10.91
Δb_Z	3.15	3.40	4.48
Δb_{ω}	6.86	7.04	7.05
Δb_{arphi}	6.70	7.01	7.27
Δb_{κ}	1.72	1.76	1.77

Method 3 does not perform adequately in the scenario when there are changes in the extent of the baseline

Example photogrammetric system (1/2)

Suspended / overhanging system for deflection measurements

May 31, 2017

Multi-day system stability test

Cam pairs / RMSEs	Total RMSE [px]		
	Day 1 vs. Day	y 2 Day 2 vs. Day 3	
Cams 1 & 2	0.64	0.92	
Cams 2 & 3	1.02	1.02	
Cams 3 & 4	0.44	0.56	
Cams 4 & 5	1.05	0.48	
Cams 5 & 6	1.75	0.60	
Cams 6 & 7	1.09	0.71	
Cams 7 & 8	1.10	2.41	
			-

Increase the calibration frequency from once to twice daily (i.e., before start and after end of each daily experiment)

Digital Photogrammetry Research Group

Example photogrammetric system (2/2)

Standing/upright system for crack observations

May 31, 2017

Same day system stability test

Cam pairs / RMSEs	Total RMSE [px]		
	Pre vs. Mid	Mid vs. Post	
Cams 1 & 2	0.96	0.28	
Cams 2 & 3	0.39	0.66	
Cams 3 & 4	0.21	0.41	
Cams 4 & 5	0.79	0.33	
Cams 5 & 6	0.53	0.24	
Cams 6 & 7	0.72	0.68	
Cams 7 & 8	1.55	1.02	

Potential source of instability in the vicinity of Cam 8

Conclusions

Three methods for performing system stability analysis were presented:

- All based on synthetic grids in image space, and pairwise relationship between neighbouring cameras
- Method 2 yields the best measure of (in)stability in the most general case
- Results help with deciding on the required frequency of calibration
- Any system instability can be pin-pointed, and potentially mitigated

Acknowledgements

The authors would like to thank:

- Dr. Mamdouh El-Badry and his team in civil engineering
- Dr. Hervé Lahamy and Jeremy Steward
- Dr. Eunju Kwak and Mehdi Mazaheri Tehrani

Thank you!

Traditional instrumentation

- Deflection measurements
 - Laser transducers, fibre optic sensors, wire strain gauges
- Crack observations

May 31, 2017

• Strain gauges, crack oculars, crack width templates

http://www.instron.com/fileuniverse/live/ images/Accessories/2601-093_P.jpg

Digital Photogrammetry Research Group

http://www.peplertech.co.uk/wpcontent/uploads/wpsc/product_images/RL-6-2.jpg 0 310 410 510 610 10 810 310 100 110 110 1310 1310

http://www.emeraldinsight.com/content_images/fig

25

Camera (in)stability scenarios

a) No instability

b) Instability between different blocks

c) Instability within a block

System stability analysis

Do the 3D reconstruction results differ depending on the set of system calibration parameters used?

