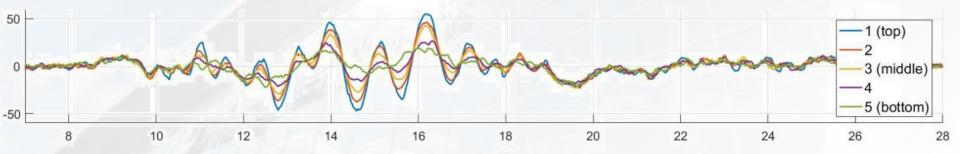
IN THE WORKING WEEK 2017 Prosented at the fight multiply and a state of the sented at the fight multiply and a state of the sented at the s

Helsinki Finland 29 May - 2 June 2017

Surveying the world of tomorrow -From digitalisation to augmented reality


Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Monitoring Masonry Walls Subjected to Earthquake Loading with a ToF Range Camera

David Holdener, Derek D. Lichti, Jeremy Steward and Pedram Kaheh University of Calgary, Canada

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Motivation

- Masonry buildings are at risk of collapsing during earthquakes
- Reducing this risk by applying repair material
- Structural loading tests to assess the effectiveness of the material

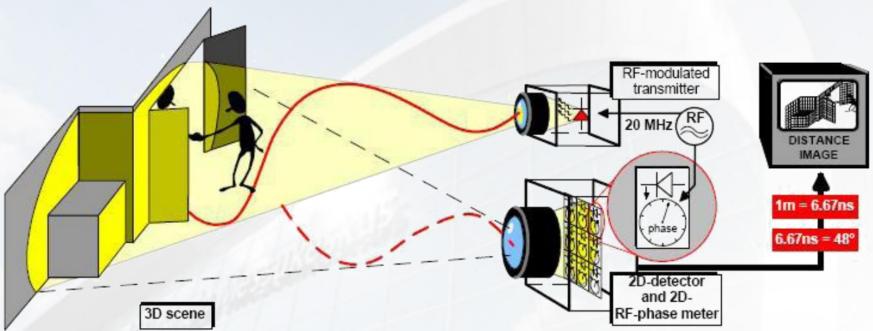
Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Research Objectives

- Monitoring the experiments using a ToF range camera
- \rightarrow Delivering additional 3D information
- → Applicability of range sensors for structural loading tests



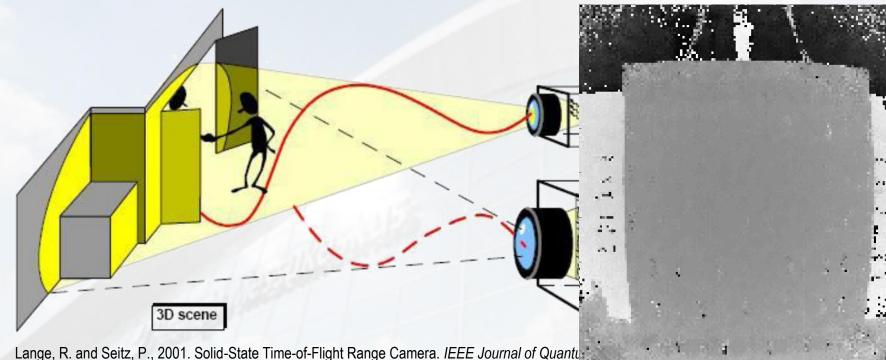
Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Time-of-Flight Range Camera Principle

Lange, R. and Seitz, P., 2001. Solid-State Time-of-Flight Range Camera. IEEE Journal of Quantum Electronics, 37(3), pp.390–397.

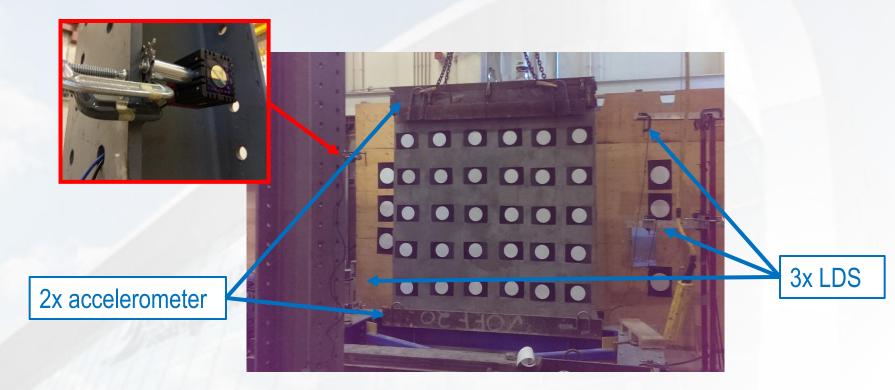


Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Time-of-Flight Range Camera Principle



Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Experiment Setup

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

± 10 mm

4 - 7 mm

SwissRanger SR4000 Data Sheet

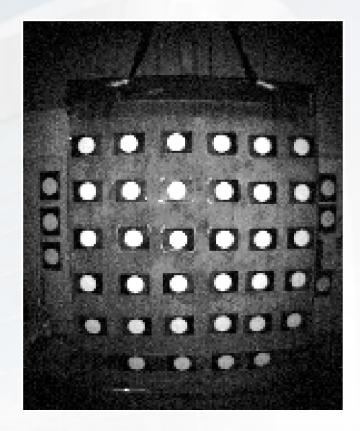
- Absolute accuracy:
- Repeatability: (for central pixels)
- Non ambiguity range:
- Resolution:
- Field of view:
- Max. frame rate

(MESA Imaging, 2011. SR4000 Data Sheet.)

5.0 m 176 x 144 pixel 69° x 56° 50 Hz

Platinum Sponsors:

Trimble.


Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Processing

- Tracking targets in 2D amplitude image
- Compute 3D coordinates
- Moving average
- Averaging multiple targets (f.e. per row)
 → under assumption of a rigid body

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

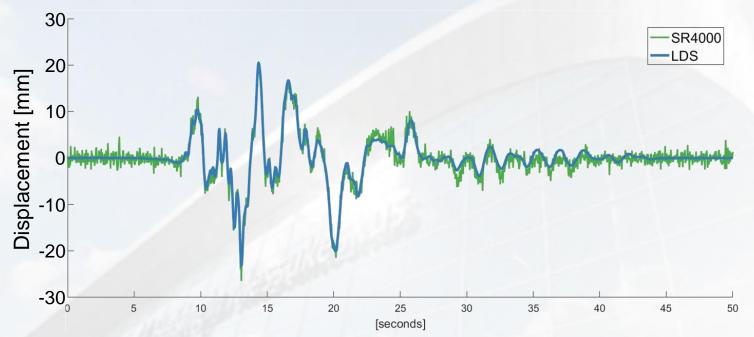
From digitalisation to augmented reality

Processing

Mean RMS from static tests:

- Tracking targets in 2D amplitude image
- Compute 3D coordinates
- Moving average
- Averaging multiple targets (f.e. per row)
 → under assumption of a rigid body

	In-plane	Distance
Single point	2.5	9.7
Moving average	1.1	4.3
Average row	1.2	4.3
Both averages	0.5	1.9



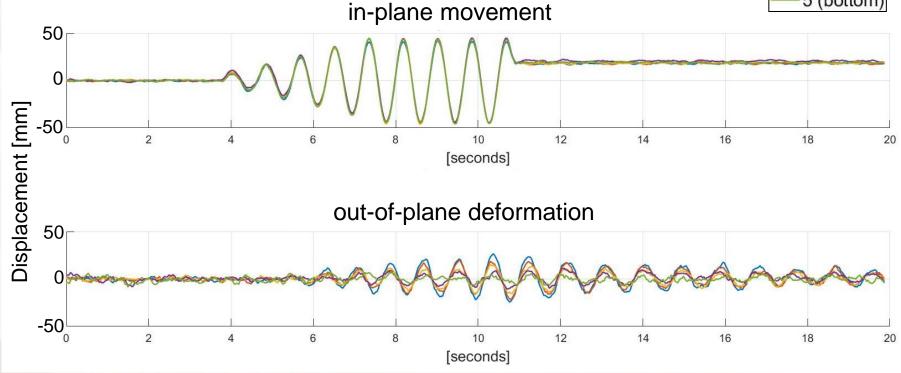
Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Comparison with Laser Displacement Sensor

→ Standard deviation of differences 1.3 - 2.7 mm (In-plane)



Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Results

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to avgmented reality

1 (top) 2 **Results** 3 (middle) 5 (bottom) out-of-plane deformation 20 0 Displacement [mm] ·20 10.2 10.4 11 11.2 9.4 9.6 9.8 10 10.6 10.8 11.4 [seconds] 50 0 褅 -50 10 2 6 8 12 14 16 0 4 18 20 [seconds]

FIG 📑 🎯 🏈

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Conclusions

- Range camera brings additional information to conventional sensors
 - Cover whole wall in 3D with one sensor
 - Safe distance to the specimen
- Advantages compared to photogrammetry or laser scanning
 - Only one sensor necessary
 - Active Sensor
 - **Dynamic** measurements at video frame rate
- Limitation in accuracy and measurement frequency
- Challenge to extract additional information to compare walls and detect failure

Surveying the world of tomorrow –

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Thank you!

