

Steering Method for Automatically Guided Tracked Vehicles

Otto LERKE and <u>Volker SCHWIEGER</u> Germany

- Introduction
- Construction Machine Simulator
- Steering Method
- Evaluation Technique and Experimental Setup
- Results
- Conclusion and Outlook

Introduction

- Usage of automatically guided construction machines enables increased working efficiency
- Application fields: e.g. transportation, roadworks, earthworks,...
- 2 possible chassis designs:

Introduction

• Advantages of tracked vehicles:

- advanced traction
- low soil compaction
- high manoeuvrability
- Disadvantages of tracked vehicles:
- lower working velocities
- reduced mobility
- Propulsion methods for tracked vehicles:
 - mechanically compounded drives
 - hydrostatic drives
 - electric drives

step-less drives/ infinitely variable drives

Construction Machine Simulator

University of Stuttgart

Germany

- The purpose of the simulator is to test and evaluate different sensors, sensor combinations, as well as filter and control algorithms.
- Model vehicles, at scale 1:14, have the ability to automatically drive along a reference trajectory → realization by lateral control algorithm

Steering Method

Generally, steering method of a two-track crawler chassis is based on a skidsteer concept (Beetz 2012).

Disadvantage: Overall speed declines, consequently working speed declines

Requirements on the pesented steering method:

- Overall speed must remain constant during curve drive
- Override protection for the drive power unit
- Easy calibration procedure

Vehicle Prerequisites:

- two stage, continous, electric drive (one actuator per track)
- step-less drive functionality

The IIGS model crawler at scale 1:14 fully meets the criteria of step-less drive functionality.

University of Stuttgart

Steering Method

Role model: mechanical differential steering block of a motor vehicle, with compensating gear, as key part.

http://camanualguide.blogspot.de/2013_04_01_archive.html l

Goal: Mathematic modelling of the compensating gear functionality

Steering Method

German

University of Stuttgart

Starting point: Kinematic model for tracked vehicles according to Le (1999)

 $R = \frac{B \cdot (v_l + v_r)}{2 \cdot (v_l + v_r)}, R - \text{curve radius}, B - \text{gauge}, v_l, v_r - \text{left and right track velocity}$ (I)

Solve (I) for
$$v_l$$
 and v_r : $v_l = v_r \cdot \frac{(2R+B)}{(2R-B)}, v_r = v_l \cdot \frac{(2R-B)}{(2R+B)}$ Definition: $\frac{(2R+B)}{(2R-B)} = n, \Rightarrow v_l = v_r \cdot n \text{ and } v_r = \left(\frac{v_l}{n}\right)$ (II)straight drive: $n = 1 \Rightarrow v_l = v_r = v_{total}$ curve drive: $v_{total} = \frac{1}{2} \cdot (v_l + v_r) = \frac{v_r \cdot n}{2} + \frac{v_l}{2 \cdot n}$ (III)Solve (III) for v_l and v_r : $v_l = (v_{total} \cdot 2 \cdot n - v_r \cdot n^2), v_r = \left(\frac{v_{total} \cdot 2}{n} - \frac{v_l}{n^2}\right)$ Substitution using (II):

Steering parameter *n* is element of the scaling term for v_{total} in order to perform curve drives.

Steering Method

Germany

University of Stuttgart

- Realisation of the continous electric drive: applying voltages to left and right actuator
- Characteristic: 1.6 V: full stop; 0.7 V: full forward
- Preferable: metric size for velocity, e.g. [m/s], [km/h],..
- → Calibration: Transfer function between voltage and velocity

Resulting Transfer Function (forward drive)

$$U = 14.26 \cdot v^2 - 7.40 \cdot v + 1.55$$

U- applied voltages at actuators v – velocity

Germany

University of Stuttgart

Controller: Controlled System: Sensor: PID, with empirically determined parameters Model Crawler (scale 1:14) Robotic Tachymeter Leica TS 30

Variable	Meaning within Closed-Loop	Appropriate Simulator Item
w(t)	reference variable	reference trajectory
e(t)	control deviation	lateral deviation between reference trajectory and actual position
u(t)	regulating variable	steering ratio, defined by steering parameter
y(t)	controlled variable	position

Evaluation Technique and Experimental Setup

University of Stuttgart

Germany

- Comparison between reference trajectory and measured trajectory
- 3 different trajectories: oval, eight and kidney which consisting of route design elements as straight lines, circle arcs and clothoids
- Analysis of the RMS of perpendicular distance/lateral deviation:

 $RMS = \sqrt{\frac{\sum_{i=1}^{n} e_i^2}{n}}, e_i$ - lateral deviation, *n*- number of measurements

University of Stuttgart Germany

Results

	Number	Individual RMS	Average RMS	Weighted Total RMS
Clothoid	1	0.0022 m	0.0021 m	0.0027 m
	2	0.0019 m		
	3	0.0021 m		
	4	0.0022 m		
Straight Line	1	0.0010 m	0.0009 m	
	2	0.0008 m		
Circle Arc	1	0.0040 m	0.0035 m	
	2	0.0029 m		

University of Stuttgart Germany

Results

	Number	Individual RMS	Average RMS	Weighted Total RMS
Clothoid	1	0.0030 m	0.0027 m	0.0027 m
	2	0.0027 m		
	3	0.0024 m		
	4	0.0027 m		
Straight Line	1	0.0024 m	0.0023 m	
	2	0.0021 m		
Circle Arc	1	0.0032 m	0.0028 m	
	2	0.0024 m		

University of Stuttgart Germany

Results

	Number	Individual RMS	Average RMS	Weighted Total RMS
Clothoid	1	0.0093 m		
	2	0.0039 m		
	3	0.0018 m	0.0035 m	
	4	0.0011 m	(0.0023 m)	
	5	0.0029 m		0.0033 m
	6	0.0019 m		(0.002 m)
Straight Line	1	0.0011 m	0.0011 m	
Circle Arc	1	0.0023 m		
	2	0.0017 m	0.0026 m	
	3	0.0038 m		

University of Stuttgart

Conclusion and Outlook

- Alternative steering method has been introduced
- Method fully meets the set requirements of constant curve drive, override protection and simple calibration procedure
- RMS for guidance quality of **2.9 mm**, respectively **2.5 mm** by consideration of the outlier, could be achieved by the presented method
- Results can be regarded as satisfactory;
 e.g. position accuracy requirements for tracked pavers and curb and gutter applications according to Stempfhuber & Ingesand (2008): 5 mm

In the future:

- Extension of mathematical model by slippage
- Investigation on backward movement and spot turns
- Longtidual control/ speed control
- Control of hight and attitude of the tool

Thank you for your Attention!

01.06.2017