G A A THE A TO THE AND A THE AND A

Indoor Parking Facilities Management Based on RFID CoO Positioning in Combination with Wi–Fi and UWB

Gikas V., Perakis H., Kealy A., Retscher G., Mpimis T., Antoniou C.

National Technical University of Athens, Greece TU Wien, Austria University of Melbourne, Australia

Surveying the world of tomorrow -From digitalisation to augmented reality

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Project goals, objectives & vehicle localization support

Key objective

to develop a unified proposal for the management of large-scale parking facilities under constraints

- near-capacity demand,
- temporally constrained arrivals / departures,
- emergency evacuation situations (under emergency conditions)

Platinum Sponsors:

Trimble

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

The need for vehicle localization data \iff key driver to the success of a project

Surveying the world of tomorrow -Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

What exactly is needed in terms of vehicle localization?

what user requirements to consider?

what parameters to compute? what level of detail?

- * topology ("vauge" position fix, direc. of movement)
- kinematics (velocity, acceleration, attitude, ...)
- sposition fix (time stamped coordinates)

other concerns to consider?

HYBRID & INDOOR ENVIRONMENT !!!

- ✓ severe multipath
- ✓ non-line-of-sight-conditions (NLoS)
- ✓ high attenuation & signal scattering
- ✓ fast temporal changes

- low weather influences
- × fixed geometric constraints
- × good infrastructure (electricity, internet access, ...)
- × lower dynamics

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

To attempt an answer, the starting point for all group members ...

Surveying the world of tomorrow –

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Overview of available indoor positioning technologies

Surveying the world of tomorrow –

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Four types of positioning technologies are considered

DRIVER BEHAVIOR IDENTIFICATION acceleration distribution

Smartphone MEMS-IMU

controlling of navigation solution hybrid & indoors

GNSS / IMU

Platinum Sponsors:

Trimble.

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Localization tools considered in this study: RFID and WLAN (WiFi) tools

- RFID, Wi-Fi:
- used for data transmission between
 a WiFi / RFID tag and a WiFi / RFID reader
- ✤ logistics, asset management, etc.

data types:

- unique tag ID: indication of location
- Receiver Signal Strength: coarse range estimation

Surveying the world of tomorrow -

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Wi-Fi and RFID equipment used includes

Sensor type	Sensor model	Raw measurements	
Wi-Fi - Bluetooth Readers	Libelium Meshlium Scanner	MAC address, RSS (db)	cost em
RFID	Freaquent HTEV600 (readers) Freaquent ETS (tags)	TagID, 3D RSS (db)	Low cost system
			ж, к у у

Platinum Sponsors:

Trimble

Surveying the world of tomorrow -

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Parking spot and experimental scenarios

- layout of the parking spot and monitoring sensors placement
- experiments were undertaken at two levels logistics, asset management, etc.

Scenari o	Number of vehicles	Environment	Goal	
S-1.1	1	Hybrid	Indoor/ Outdoor environment transition	so far four preliminary test scenarios have been undertaken
S-1.2	1	Indoor	Floor level changing recognition	
S-2	2	Indoor	Dual vehicle trajectories recognition	
S- 3	10	Indoor	Multiple vehicles trajectories recognition	

Surveying the world of tomorrow –

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Snapshots from data acquisition

Surveying the world of tomorrow -

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Outcome of the RFID CoO data processing and analysis

vehicles V3 and V9 for scenario 2

the trajectory of for V9 is more representative of the actual trajectory compared to the one obtained for V3

relates to the sampling frequency of RFID and vehicle velocity

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Wi-Fi RSS values recorded from the smartphones placed on V3 and V9

multipath effects \rightarrow degrade RF signal propagation \rightarrow RSS-distance models / lateration ???

Also, the Wi-Fi RSS radio maps were generated for the respective RFID positions for vehicles V3 & V9

Despite the low resolution, Wi-Fi fingerprinting appears to be a viable solution for complementing an RFIDbased positioning solution

Platinum Sponsors:

18 \$

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

combined RFID CoO and Wi-Fi dynamic fingerprinting solution for positioning indoors

RFID CoO positioning

- provides the primary positioning information
- ✤ a reference for Wi-Fi fingerprinting training
- ✤ in case of missing RFID position fixing Wi-Fi activates to close the gap

 a training phase for Wi-Fi fingerprinting training is required

RFID position fix

- Wi-Fi RSS values are associated to RFID locations for training the system
- WiFi positioning provides solution in cases of RFID CoO positioning absence

Platinum Sponsors:

WiFi positionin

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Summary and Outlook

preliminary results from an RFID CoO and Wi-Fi fingerprinting positioning concept for indoor parking facilities management

- RFID CoO algorithm has shown a tag detection success rate 70%-90%
- the low data sampling rate may result in a very sparse vehicle trajectory

on the other hand ...

- Wi-Fi RSS-based fingerprinting appears to be a viable solution for complementing RFID-based positioning
- the low update rate and the requirement for a dense access point network make this option hard to implement.
- further investigation is needed to study the potential of a combined RFID / Wi-Fi-based solution using various approaches

