

XXVI FIG CONGRESS

11 May 2018, İstanbul

Single base RTK solutions obtained individually with Galileo and BeiDou as well as in combination with other fully operational GNSS

Organized by

Main Supporters

Platinum Sponsors

Outline:

- Introduction
- Current status of the GNSSes
- Real Time Kinematic (RTK)
- Geodetic Network Establishment (CROPOS)
- RTK measurements
 - GNSS receivers & equipment
 - Mission planning
 - Accuracy & Precision estimation
- Conclusions

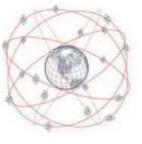
Main Supporters

Introduction:

- Real Time Kinematic: Single-base & Networked
- GPS & GLONASS: Fully Operational GNSSes
- Galileo & Beidou: still under construction
- In 2006 some leading manufacturers (Leica, Topcon, Trimble) started a production of receivers with a capability of tracking Galileo (GIOVE) satellites
- Today, almost all recently produced GNSS receivers support a tracking of Galileo (GAL) and BeiDou (BEI) satellites
- A possibility and feasibility of GAL and BEI systems for single-base RTK positioning has been tested (assessed) and presented

6-11 May 2018, İstanbul

- GPS (first launch in 1978; FOC in 1995)
 - 31 satellites (12 Block IIR, 7 Block IIR-M, 12 Block F)
 - CDMA (L1, L2, L5); next generation Block III (L1C)
- GLONASS (first launch in 1982; FOC in 1996, again in 2011)
 - 23 satellites (GLONASS-M, GLONASS-K)
 - FDMA (CDMA on GLONASS-K)



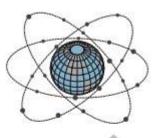
- 6 Orbital Planes
- 24 Satellites + Spare
- 55° Inclination Angle
- Altitude 20,200 km

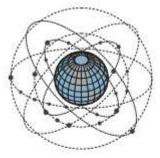
GLONASS

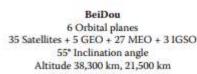
- 3 Orbital Planes
- 21 Satellites + 3 Spares
- 64.8° Inclination Angle
- Altitude 19,100 km

Current status of GNSSes:

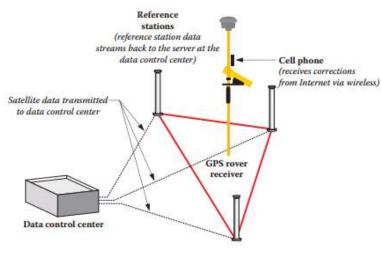
- GALILEO (first launch in 2005; 2008 (GIOVE A&B);
 - FOC started in 2014 expected to be completed by 2020)
 - 22 satellites (14 usable, 2 testing, 4 under commissioning, 2 not usable/available)
- BeiDou
 - 28 satellites (15 included in operational constellation (Beidou-2); 13 not included in operational constellation (BeiDou-3)
 - FOC by 2020 (5 GEO, 3 IGSO, 27 MEO)







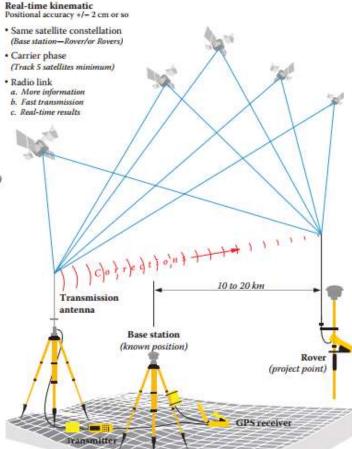
Galileo 3 Orbital planes 27 Satellites + 3 spares 56° Inclination angle Altitude 23,222 km



Real Time Kinematic (RTK):

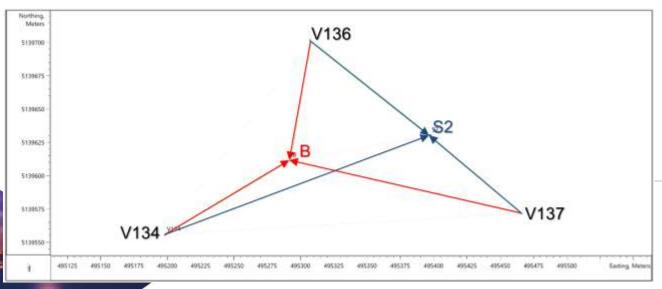
- Single base RTK (10-20 km for rapid and reliable ambiguity resolution)
 - TTFA depends on a distance-dependent biases (iono, tropo, orbit) Reference
- Network RTK (distance-dependent biases are modelled)
 - **CROPOS**

Van Sickle (2015)



CROatian Position System (CROPOS):

- 33 national GNSS stations + 18 GNSS station from neighbouring networks
- $\sim 70 \text{ km}$
- established in 12/2008
- DPS, Highly Precise Positiong Service (HPPS); Geodetic Precise Positiong Sservice (GPPS)
- VRS concept implementing Trimble's solution
- **Currenty CROPOS supports GPS and GLONASS** observations
- GPPS was used for geodetic network establishment



Geodetic Network and Static GNSS observations:

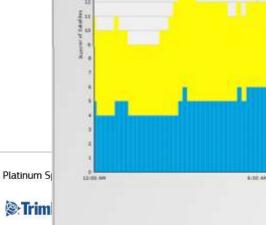
- 6 stations (S1, P1, P2, P3, **S2**, **B**)
- Static observations at S2 and B for 44 min
- CROPOS GPPS (Rinex 3.02): 3 VRS
- Topcon Magnet Office Tools
- (E, N, h)
- $\sigma(E) = 3 \text{ mm}; \ \sigma(N) = 3 \text{ mm}; \ \sigma(h) = 6 \text{ mm}$

Topcon Hiper SR (station S2) & Hiper HR (station B)

MBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT: ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES 6. 11 May 2018 Interpret

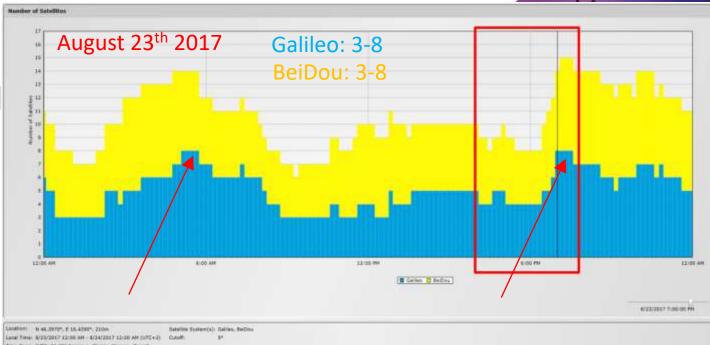
6-11 May 2018, İstanbul

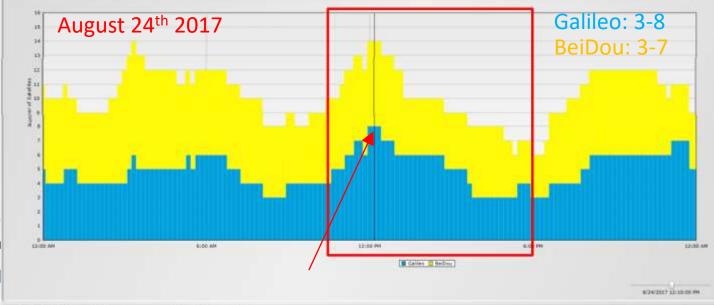
- GNSS receivers (base & rover) with a capability of tracking and positioning using GALILEO and BeiDou satellites
- Tracking vs. Positioning
- 2x Topcon Hiper HR (452 channels)
- FC-5000 controller with installed TRU
- Topcon Receiver Utility (TRU)
- Single-base RTK
- Topcon's LongLink



GNSS planning

- **GNSS Planning Online tool** http://www.trimble.com/GNSSPlanningOnline
- 2x Topcon Hiper HR receiver were available for two consecutive days: August 23th and 24th 2017.
- Planning has involved Galileo and BeiDou satellites only
- GPS (visible 8-12 SV)
- GLONASS (visible 6-10 SV)





RTK positioning:

- August 23th and 24th 2017
- Static observations \rightarrow accuracy assessment
- Two consecutive days \rightarrow precision assessment
- Base GNSS receiver set up on tripod
- Rover GNSS receiver on the range pole
- Base receiver started by TRU running on FC-5000 controller (set to track all visible and available satellites);

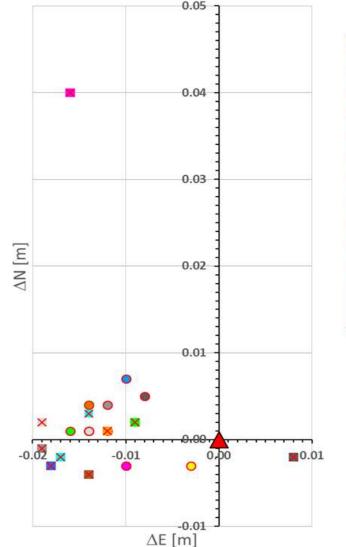
RTCM 3.02 via LongLing Bluetooth connection

13 different satellite system combinations:

- 1. GPS+GLO+GAL+BEI (GGGB)
- 2. GPS+GLO+GAL (GPS.GLO.GAL)
- 3. GPS+GLO+BEI (GPS.GLO.BEI)
- 4. GPS+GAL+BEI (GPS.GAL.BEI)
- 5. GLO+GAL+BEI (GLO.GAL.BEI)
- 6. GPS+GLO (GPS.GLO)
- 7. GPS+BEI (GPS.BEI)
- 8. GPS+GAL (GPS.GAL)
- 9. GLO+BEI (GLO.BEI)
- 10.GLO+GAL (GLO.GAL)
- 11.GAL+BEI (GAL.BEI)
- 12.GAL only (GAL)
- 13.BEI only (BEI)

RTK measurement results:

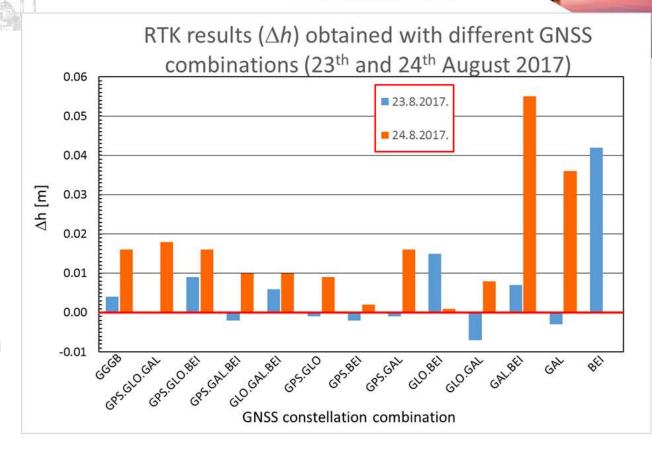
- The photos were systematically named and stored, taking care about GNSS constellation combination
- Ellipsoidal coordinates along with the PDOP, HRMS, VRMS were typed in Excell spreadsheet
- The most vulnerable step → special attention was paid including multiple checks
- $(\varphi, \lambda, h) \rightarrow Magnet Office Tools \rightarrow (E, N, h)$
- Accuracy and Precision estimation enabled



RTK accuracy estimation (2D):

- Static observations (B, S2)
- Λ = Measured Reference
- August 23th 2017 (all combination provided a FIXED solution)
 - (2D): 4 to 16 mm (AVE 13 mm)
- August 24th 2017 (BEI only combination with Autonomuous solution)
 - (2D): 8 to 43 mm (AVE 17 mm)

RTK results (ΔE , ΔN) obtained with different GNSS combinations (23th (1) and 24th (2) August 2017)



RTK accuracy estimation (h):

- Static observations (B, S2)
- Λ = Measured Reference
- August 23th 2017 (all combination provided a FIXED solution) (h): -7 mm to 42 mm (RMS 13 mm)
- August 24th 2017 (BEI only combination with Autonomuous solution) (h): 1 mm to 55 mm (RMS 22 mm)



RTK precision estimation (23th vs 24th August):

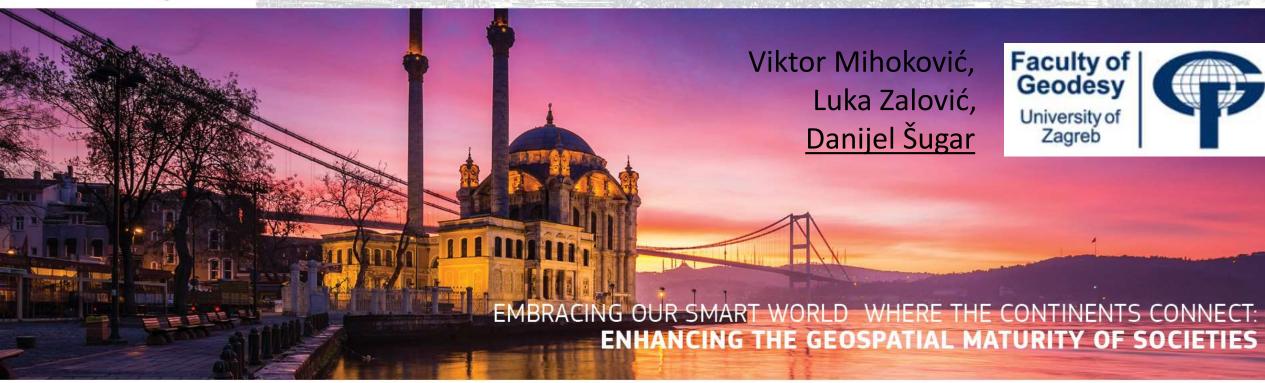
- Each GNSS constellation combination results are compared among two consecutive days of observation
- 2D: 0 to 43 mm (RMS 14 mm) largest differences obtained from GAL only (43 mm) and GAL.BEI combination (17 mm)
- Δh : -14 mm to +48 mm (RMS: 21 mm) largest differences obtained from GAL.BEI (48 mm) and GAL only (39 mm)
- CONCLUSION: combinations including at least on fully operational GNSS (GPS or GLONASS) can provide consecutive results within 2 cm

CONCLUSIONS:

- Single base RTK results obtained with 13 GNSS constellation combinations
- Individual and joint combinations consisting of observation data of systems under construction (Galileo and BeiDou)
- Exclusion of GPS observations from RTK solution (enabling individual solutions)
 has been carried out by TRU SW running on field controller
- Planning tool has pointed out optimal time windows allowing individual (GAL, BEI) solutions
- For reliable RTK positioning results (2 cm (2D) & (h)) the usage of at least one fully operational GNSS is needed
- Results obtained with few constellations (3 or 4) haven't shown a significant improvement in terms of accuracy and precision.

REMARK:

 This paper has been compiled from the students' publication rewarded with the Dean's Awards of the Faculty of Geodesy for the academic year 2016/2017.



XXVI FIG CONGRESS

6-11 May 2018, İstanbul

Single base RTK solutions obtained individually with Galileo and BeiDou as well as in combination with other fully operational GNSS

Organized by

TIBES.

Main Supporters

Platinum Sponsors

