Vertical Reference Frames in Slovakia and their Reciprocal Differences

Marcel MOJZEŠ and Martin KALAFUT, Slovakia

ABSTRACT

Numerical expression of vertical differences among vertical reference frames used in Slovakia and neighbouring countries requires common practice based on the need of exchange of geodetical data within different international projects, where different international institutions take part in. The presented article describes definitions and realizations of three vertical reference frames: Adriatic (zero levelling point in Trieste, Italy), Baltic after adjustment – Bpv (zero levelling point in Kronstadt, Russia) and European (zero levelling point in Amsterdam, The Netherlands), transformation relations among them and numerical computation of vertical differences among them.

Keywords: vertical reference systems, vertical reference frames, transformation, geoid, quasigeoid

Vertical Reference Frames in Slovakia and their Reciprocal Differences

Marcel MOJZEŠ and Martin KALAFUT, Slovakia

1. PREFACE

New theoretical knowledges about earth's structure and its physical characteristics have large impact on definitions and realizations of vertical reference frames (*Drewes, 2009*). Real implementation of a vertical reference system on the millimetre level of precision constitutes highly ambitious task regarding its theoretical formulation, numerical realization and computation of the required corrections during processing of measured data.

Generally, vertical reference system is defined by dataset of constants, a model of mean sea level heights and by tidal model.

Vertical reference frame is realization of a defined vertical reference system.

In Europe, there are three different kinds of physical heights (mean sea level heights – MSL): *normal* MSL heights, *orthometric* MSL heights, *normal orthometric* MSL heights. Normal heights are used in France, Germany, Sweden and in most central and eastern European countries, orthometric heights are used in Belgium, Denmark, Finland, Italy and Switzerland, normal orthometric heights are used in Norway, Austria and in the Balkans countries.

Further in text we will alternate the use of mean sea level phrase and its abbreviation MSL. When it will not be otherwise stated explicitly, the word *height* will always be related to the height above mean sea level (MSL).

Vertical reference frame on earth's surface is realized by mean sea level, which is monitored on one or several stations with water level gauges. Reference water level gauges are installed in oceans or inland seas like Atlantic Ocean, Baltic Sea, Adriatic Sea, Black Sea or Northern Sea. Differences among their mean sea levels can vary between several decimetres up to meter level (e.g. around Australia). This is caused by different mean sea level height of oceans and seas with respect to physical centre of earth (*Ihde and Augath, 2000*).

Current solution of tasks bounded to vertical reference frames requires information about dynamics of earth's surface in static, kinematic and dynamic shape. It supposes deeper study of theoretical and experimental results of the whole process, which run all over earth's surface, where is planned the establishment of a vertical reference network for monitoring of vertical variations.

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

2. BASIC DEFINITIONS AND INFORMATION

A vertical reference frame is a single-dimensional coordinate system defined by an origin and by scale defined by levelling rod. The origin is a point on the earth's surface, where its height is defined by a specific value or by mean height of tide gauge. The height differences can be measured from this origin to any point using standard levelling procedures and corrections complying the parameters of actual or normal earth's gravity field. Mean sea level point traditionally served as an origin. The absolute value of the earth's gravity field is not important on this point, because we are interested in only vertical differences (potential differences) with respect to the origin (*Jekeli, 2006*), see Fig.1.

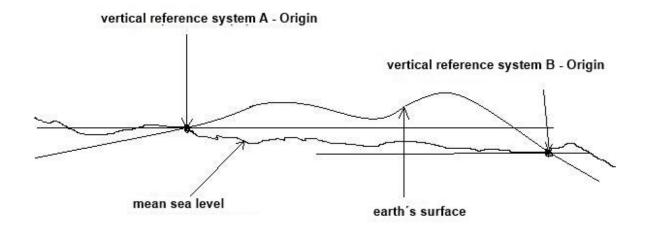


Fig.1. Two vertical reference frames.

2.1 Adriatic vertical reference frame

Adriatic vertical reference frame is defined by mean sea level of Adriatic Sea measured in Trieste, Italy (Molo Sartorio) in 1875 by Dr. Farolfi using measurements of sea level during one-year period only. The measured height differences were corrected using normal orthometric corrections. The adjustment of the levelling network of the 1st order was carried out by means of conditional equations (for more details – see *Vykutil*, *1978*).

However, the epoch, in which Dr. Farolfi measured the mean sea level of Adriatic Sea was too short. Considering the positional variations of the Moon and the Sun with respect to the Earth, it was needed to observe the position of the Adriatic Sea level during period of 18.6 year (*Lowrie, 2007*). Primary vertical point was stabilised on the custom house in Trieste, Italy. The levelling lines were measured from this point over the whole former Austro-Hungarian monarchy and nearly exclusively along railroads.

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

After 1945, there was established the Czecho-Slovak unified levelling network ($\underline{\check{c}}$ esko-<u>s</u>lovenská <u>j</u>ednotná <u>n</u>ivelačná <u>s</u>ieť), in short referred to as ČSJNS (this abbreviation will be used in the following text regularly) with its basic height point Lišov (near the town České Budejovice in the Czech republic). The results of measurements of levelling lines carried out during 1939 – 1941 in the Czech Republic were incorporated into ČSJNS of the 1st order along with new levelling lines measured during 1946 – 1948 in Czecho-Slovak border regions and during 1949 – 1952 in Slovakia. The ČSJNS of the 1st order was adjusted as a whole after applying normal orthometric corrections.

2.2 Baltic vertical reference frame after adjustment – Bpv

Baltic vertical reference frame after adjustment (Baltský výškový referenčný rámec - <u>B</u>alt <u>po</u> <u>v</u>yrovnaní), in short referred to as Bpv (this abbreviation will be used in the following text regularly) is defined by mean sea level of Baltic Sea in Kronstadt on the Kotlin island, near Sankt Petersburg, Russia. The measured height differences were corrected by normal earth's gravity field corrections according to the theory of Molodensky prior to adjustment. In 1957, the ČSJNS levelling network of the 1st order was jointly adjusted along with the levelling networks of western part of then Soviet Union and also with levelling networks of former East Germany, Poland, Hungary and Bulgaria.

On the territory of former Czecho-Slovakia, the mean sea level heights in the vertical reference frame Bpv differ from Adriatic mean sea level heights in the interval of 35 - 42 cm. The reason for the differences is due to the:

- set up of different mean sea level heights for both vertical reference systems
- use of different method of computation of earth's gravity field corrections
- international adjustment of levelling network.

For example, the mean sea level height of the point Lišov (near the town České Budejovice in the Czech republic) in the Bpv vertical reference frame is 564.7597 m, what is in 0.3886 m lower than in Adriatic vertical reference frame (see *Vykutil*, 1978; Böhm, Hora, Kolenatý 1981).

This approach is based on the stationary principle of earth's surface and oceans and assumes that there is no change on earth's surface and that there is no change in the mean sea level height in the course of time.

However, up-to-date knowledges regarding height measurements on the earth's surface and mean sea level measurements confirm that there are changes in heights on the earth's surface and also there are changes in mean sea level heights in water level gauges in the course of time, first of all due to the:

- melting of icebergs on the whole earth's surface (mostly in Greenland and Antarctica). This results in the change of mean sea level heights in water level gauges on average in 3.2 mm a year,
- 2. losing of substances of icebergs which are moved into the oceans. This results in the socalled global isostatic adjustment of earth's surface. In Europe, this is expressed by global isostatic lift of earth's surface in Scandinavian area (about 1 cm a year). In

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

Slovakia, global isostatic adjustment shows drop of earth's surface on the level of approximately 1 mm a year.

These effects, however, are not significant for relative changes of height differences between vertical reference frames **Adria**čsjns (also known as **Jadran**čsjns) and **Bpv**.

2.3 European vertical reference system (EVRS)

European vertical reference system (EVRS) was established based on the initiative of the EUREF commission (European regional commission of the International geodetical association for geodetical reference systems) with the aim to build up a united European levelling network (UELN-United European Levelling Network). UELN was established in 1973 and contained levelling networks of the 1st order of 14 western European countries.

In 1994, during EUREF session in Warsaw, Poland, a resolution was adopted to join vertical reference frames of all European countries with an accuracy better than 0.1 m (*Beneš*, 1999). The realization of the process was carried out in a few phases. Last phase was branded as UELN-95/98 and constitutes a base for a European vertical reference system adopting all future measurements.

European vertical reference system (EVRS) is defined by the following conventions:

- a) Vertical reference system has a zero value in a point, in which actual earth's gravity potential W_o equals normal gravity potential U_o on a mean earth's ellipsoid:
 - $W_o = U_o$, (1)
- b) Height component is basically the difference ΔW_P between earth's field gravity potential in the point P and earth's field gravity potential W_0 (gravity potential on the geoid surface). The difference of potential ΔW_P is referred to as geopotential number c_P

 $-\Delta W_P = W_o - W_P = c_P ,$ (2)

Normal heights are equivalent to geopotential numbers.

c) EVRS (European Vertical Reference System) parameters are expressed in zero tidal system. It means that potentials both in the definition a) and in the definition b) contain potentials of permanent tidal deformations, however – they do not contain permanent tidal potential itself.

2.4 European vertical reference frame 2000 (EVRF2000)

Realization of the European vertical reference frame 2000 (*EVRF2000, see Ihde, Mäkinen., Sacher, 2007*) comes out of the following adopted principles:

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

1. Zero level gets across a reference point of the UELN network No. 000A2530 – Normaal Amsterdams Peil (NAP) located in Amsterdam, The Netherlands. It means that it is valid

 $C_{NAP} = 0.$

2. For the computation of derived parameters and constants of the normal earth's gravity field is used Geodetical Reference System 1980 (GRS80). It follows that

 $W_{NAP}^{RREAL} = U_{oGRS80.}$ (4)

- 3. European vertical reference frame 2000 (EVRF2000) is fixed by geopotential number of 7.0259 m².s⁻² and by equivalent normal height of 0.71599 m on the reference point NAP No. 000A2530 in Amsterdam, The Netherlands.
- 4. EVRF2000 is realized for practical use as a static vertical reference frame, defined by means of differences of earth's gravity field potentials with respect to the NAP reference point or by equivalent normal heights of points with respect to the NAP reference point.
- 5. Geometrical position of points is expressed in the European Terrestrial Reference Frame 1989 (ETRF89).
- 6. EVRF2000 uses the Zero Tide System for the reduction of measured data.

The EVRF2000 can be realized by two techniques or methods:

a) By means of levelling and gravimetric observations and subsequently by adjustment of geopotential numbers as follows:

$$W_P = W_o - c_{p,Hn} = c_{p/-\gamma},$$

(5)

where γ is an average value of normal acceleration of gravity along of normal plumb line from equipotential ellipsoid to the telluroid,

b) By means of GNSS observations (ellipsoidal height h_P) and by global quasi-geoid model (Global Gravity Model - GGM) by solving the geodetic boundary value problem (GBVP)

$$W_P = U_P + T_P, \zeta_P = T_P / \Upsilon_Q = (W_P - U_P) / \Upsilon_Q, Hn = h_P - \zeta_P,$$

(6)

where ζ_P is the height (undulation) of a geoid or a quasi-geoid in the point P.

2.5 European vertical reference frame 2007 (EVRF2007)

EVRF2007 is a new realization of the EVRS based on the combined strategy of three elements: reference network, vertical reference frame and observations developing in the course of time of the reference frame. If it is possible, the measured data are reduced to the

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

epoch 2000 to enable the determination of the transformation relationships between EVRF2007 and EVRF2000. EVRF2007 is realized by a new adjustment of the UELN by means of geopotential numbers. All measurements from Scandinavian states are reduced to the epoch 2000 from post glacial rebound. The reference frame EVRF2007 is realized using 13 reference points on European continent with special stabilization and their geopotential differences comply to the following condition:

$$\sum_{i=1}^{13} (c_{P,95/98} - c_{P,EVRF2007}) = 0.$$
(7)

Geopotential differences are reduced to zero tidal system. All details regarding the organization of observations, reductions and the adjustment of the observations can be found in (Sacher, Liebsch, 2015).

2.6 Mathematical formulation of the difference between two vertical reference frames

Let's label the reference height in the Adriatic vertical reference frame (**Jadran**čsJNS) by superscript A and in the Baltic vertical reference frame after adjustment (**Bpv**) by superscript B (see Fig. 1). Let's consider two points C and D, which have known reference heights in both vertical reference frames A and B. The reference height of the point D in the **Jadran**čsJNS can be expressed by the following equation:

$$H^{A}(D) = H^{A}(C) + \Delta h_{CD}^{niv} + C_{CD}^{1} + v_{D}, \qquad (8)$$

where

 $H^{A}(D)$ - is reference height of the point D in **Jadran**čsjns in meters,

 $H^{A}(C)$ - is reference height of the point C in **Jadran**čsus in meters,

 Δh_{CD}^{niv} - is levelling height difference between points C and D in meters,

 C_{CD}^{1} - is normal orthometric correction between points C and D in millimetres,

 v_D^A - is correction coming out of the adjustment in **Jadran**čsuns on the point D in millimetres.

The normal orthometric correction C_{CD}^{1} between points C and D can be computed from the equation (*Pick*, 1987)

 $C_{CD}^{1} = -0.0000254 H_{m} \Delta \varphi'' \text{ (in mm)},$ (9)

where

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

$$H_m = \frac{H_C + H_D}{2} \quad \text{(in meters),}$$

 $\Delta \varphi$ is in angular seconds.

For the reference height of the point D determined in the vertical reference frame **Bpv** can be written the following equation:

$$H^{B}(D) = H^{B}(C) + \Delta h_{CD}^{niv} + C_{CD}^{1} + C_{CD}^{2} + v_{D}^{B},$$
(10)

where

 $H^{B}(D)$ - is reference height of the point D in **Bpv** in meters,

 $H^{B}(C)$ – is reference height of the point C in **Bpv** in meters,

 Δh_{CD}^{niv} - is levelling height difference between points C and D in meters,

 C_{CD}^2 – is earth's field gravity correction between points C and D in millimetres,

 v_D^B - is correction coming out of the adjustment in **Bpv** on the point D in millimetres.

The earth's field gravity correction C_{CD}^2 between two points C and D can be computed from the equation (*Pick*, 1987)

 $C_{CD}^2 = 0.0010193 (g - \gamma)_m \Delta h_{CD}^{mer}$ (in mm). (11)

where

 $(g - \gamma)_m$ - is mean value of the Fay's anomaly of the acceleration of gravity between points C and D in milligals,

 Δh_{CD}^{mer} - is levelling height difference between points C and D in meters.

The Fay's anomalies of the acceleration of gravity are unsuitable for the use of linear interpolation method in the practical calculations. If there is available a map of Bouger's anomalies of acceleration of gravity $(g - \gamma)_B$, which is sufficiently precise, the interpolated values of Bouguer's anomalies of acceleration of gravity can be transformed on the Fay's anomalies of acceleration of gravity by means of equation

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

$$(g - \gamma)_F = (g - \gamma)_B + 0.1119H$$
 (in milligals),
(12)

where *H* is mean sea level height of the point in meters.

If we subtract the equation (8) from the equation (10), we get the *height difference between two vertical reference frames* and in our case it means the height difference between Baltic vertical reference frame after adjustment (Bpv) and Adriatic vertical reference frame (Jadran_{ČSJNS}) in the point D:

$$\Delta H^{AB}(D) = H^{B}(D) - H^{A}(D) = H^{B}(C) + \Delta h_{CD}^{niv} + C_{CD}^{1} + C_{CD}^{2} + v_{D}^{B} - H^{A}(C) - \Delta h_{CD}^{niv} - C_{CD}^{1} - v_{D}^{A},$$
(13)

eventually

$$\Delta H^{AB}(D) = H^{B}(D) - H^{A}(D) = H^{B}(C) - H^{A}(C) + C_{CD}^{2} + v_{D}^{B} - v_{D}^{A}$$
(14)

The equation (14) can be used for control calculation of the height differences between two vertical reference frames on any point, if we know the height difference between two vertical reference frames on a specific point and we apply the earth's field gravity correction C^2 between specific point and an arbitrarily chosen point. The calculation of $v_D^B - v_D^A$ values is problematic in such case, when the corrections coming out of a vertical reference network adjustment are unknown, what is also our case.

We assume that the corrections coming out of the vertical reference network adjustment are sufficiently small and do not exceed the value of 10 mm. This is the reason, why we can neglect them (*Vykutil*, 1978).

3. Computation of height differences on levelling points with historical Adriatic heights (Jadrančsjns) and historical Baltic heights after adjustment (Bpv) along the Austrian – Slovakian border on the Morava river

3.1 Historical background of transition from Jadrančsus to Bpv

Adriatic vertical reference frame realized by ČSJNS (**Jadran**čsJNS) was a mandatory vertical reference frame within former Czecho-Slovakia till 1952. For topographic mapping of the scale 1:25 000, which started in 1952, the mean sea level heights of points in the Adriatic vertical reference frame **Jadran**čsJNS were transformed into approximate Baltic vertical reference frame by subtracting a constant value of 0.68 m. This Baltic vertical reference frame was referred to as **B-68**.

As of February 17, 1955, by decision of the former Main Executive of Geodesy and Cartography (Ústredná správa geodézie a kartografie – ÚSGK) was introduced an interim Baltic vertical reference frame referred to as **B-46**. All mean sea level heights of levelling

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

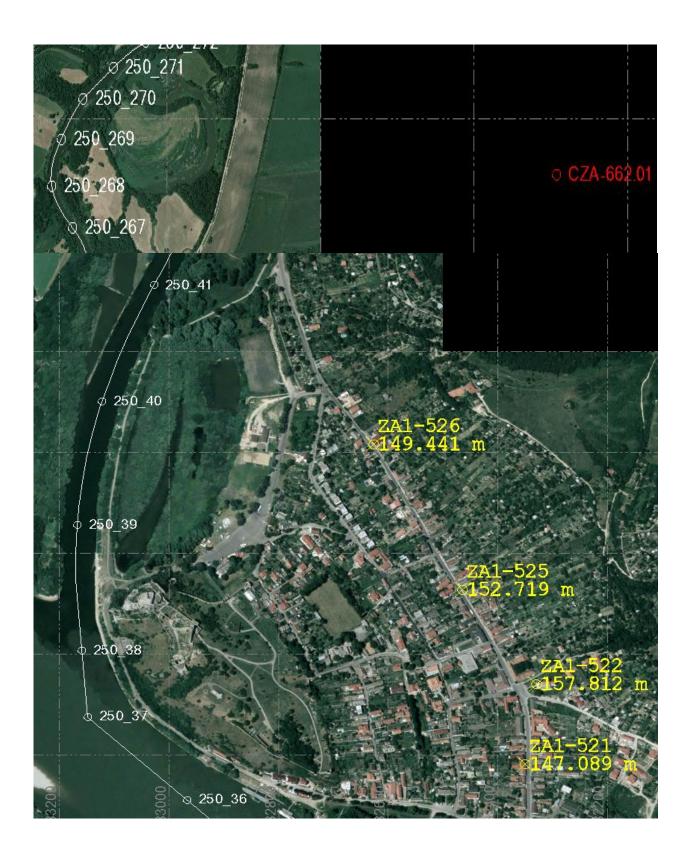
points in this interim vertical reference frame B-46 were computed by subtracting a constant value of 0.46 m from mean sea level heights determined in Adriatic vertical reference frame **Jadran**čsJNS. The height difference (46 cm) was computed on an identical levelling point of former Czecho-Slovakian and soviet levelling network in the border village Čierna nad Tisou located on the current Slovakian and Ukrainian border.

In 1957, the former Czecho-Slovakian levelling network of the 1st order was collectively adjusted along with levelling network of western part of then Soviet Union and also with the levelling networks of former socialist countries. Prior to adjustment, all observed height differences were corrected by Molodensky's corrections coming out of actual acceleration of gravity observed on the earth's surface. The basic point (a point with zero mean sea level height) for this adjustment was a point with tide gauge in Kronstadt on the Kotlin island, near Sankt Peterburg, Russia. So emerged the Baltic vertical reference frame after adjustment also known as Bpv (<u>Baltský výškový systém po vyrovnaní – Bpv, see Vykutil, 1978</u>).

The computation of the height differences between historic Adriatic vertical reference frame realized by levelling network of the 1st order **Jadran**čsjns (1951) and historic Baltic vertical reference frame after adjustment **Bpv** (1951) was carried out in the middle of the Morava river which constitutes the border between Austria and Slovakia, starting at the confluence of rivers Dyje and Morava on the Austria-Czech-Slovakian border point as far as the confluence of rivers Morava and Danube at the Devín village in Slovakia, near Slovakian capital Bratislava and thereof in the middle of Danube river as far as Lafranconi bridge in Bratislava, for the purposes of Slovak Water Management Enterprise company, state enterprise with headquarters in Banská Štiavnica, subsidiary Závod Bratislava. The computation was carried out based on the data which were provided by Geodetical and Cartographical Institute, Bratislava (Geodetický a kartografický ústav Bratislava - GKÚ) – see Tab. 1 and Tab. 2.

Subsequently, using the same method of computation in the same geographical area, the determination of height differences was carried out between currently mandatory Adriatic vertical reference frame (Adria) in Austria and currently mandatory Baltic vertical reference frame after adjustment (Bpv) in Slovakia, by using currently valid Adriatic mean sea level heights on 57 Austrian levelling points located on the Austrian side of the Morava river and also by using 52 Slovakian levelling points with currently valid Baltic after adjustment mean sea level heights on Slovakian side of the Morava river. Both sets of levelling points have their mean sea level heights determined by precise levelling method in their respective vertical reference frames – Adria and Bpv (see Chapter 4).

3.1.1 Important explaining comment regarding the use of Slovakian levelling points with their historical mean sea level heights in both vertical reference frames Jadrančsuns and Bpv


To perform internally consistent height transformation from one vertical reference frame to the another one and vice versa (in our case in this Chapter 3, we are dealing with height transformation between **Jadran**čsjns (1951) a **Bpv** (1951) on Slovakian levelling points only), it is necessary to know the mean sea level heights on a sufficient set of identical vertical points in the area of interest in both considered vertical reference frames. The

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

observations should come out of the same or nearly the same time period. To solve the task, we have to take into our consideration the fact that we have available only historical mean sea level heights in the Adriatic vertical reference frame **Jadran**čsjns on Slovakian levelling points (originating from 1951 and since then these **Jadran**čsjns mean sea level heights on Slovakian levelling points were never updated, since this vertical reference frame is no more used in Slovakia). It practically means that we also have to take into the computation of the mean sea level heights in the Baltic vertical reference frame after adjustment (**Bpv**) on the same set of Slovakian levelling points originating from the same time period.

If we would use currently valid mean sea level heights in vertical reference frame **Bpv**, the solution would inherently be inconsistent, because we would compare the currently valid mean sea level heights in the vertical reference frame **Bpv** with historical (more than 60 years old) mean sea level heights in the Adriatic vertical reference frame Jadrančsus (1951, which had to be considered as static (unvarying), what is in deep contrast with the reality of geodynamic phenomenon (ascending and declining) of the earth's surface in the course of time. This fact cannot be neglected for longer time period. It can clearly be seen, when we look on the mean sea level heights on the identical Slovakian levelling points of the 1st order in the vertical reference frame Bpv, which are valid in 2018 (see Tab. 1, 4th column from the left). If we would compute the height differences between the Jadrančsjns (1951) vertical reference frame and the Bpv (2018) vertical reference frame, on some points these height differences would be very close to the height differences between Jadrančsus (1951) a Bpv (1951) – for example, point CZA-544, where the difference of height differences is 0.0001m. On other points are the differences greater (several cm). The significant difference is in our case on the identical levelling point ZBZC-544, where the difference of the height differences reaches the value of 0.1078 m (it is in the area Sekule - Brodské, state border between Slovakia and the Czech Republic).

This is the reason, why we use the abbreviation **Bpv** (1951) in our text. It is necessary to understand it in such manner that we are speaking about mean sea level heights or their differences on identical levelling points which were observed in 1949 - 1951 (*Kruis, 1957*) and adjusted in the first adjustment within vertical reference frame Bpv in 1957. From this year onward, the vertical reference frame Bpv was officially adopted as the only mandatory vertical reference frame in Slovakia. The considered area of interest (about 78.3 km long line running in the middle of the Morava and Danube river) was divided on 314 small segments (each of them 250 m long) with planar horizontal coordinates X,Y in Slovakian national horizontal coordinate frame referred to as S-JTSK (Systém jednotnej trigonometrickej siete katastrálnej or System of the unified trigonometrical cadastral network) as can be seen on the Fig. 2, which represents small part (confluence of Morava and Danube river) of the total 78.5 km length.

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

FIG Working Week 2020 Smart surveyors for land and water management Amsterdam, the Netherlands, 10–14 May 2020 Fig.2. Segmentation in the middle of Morava/Danube river with points (each other away 250m – in white). Nearby points in yellow colour represent levelling points of the 2nd order levelling network and in red colour are points of the 1st order levelling network.

The points in white colour in the Fig. 2 represents start/end point of 250 m long segment with their horizontal coordinates in the Slovakian national coordinate frame S-JTSK. On these points are computed the mean sea level differences between vertical reference frames **Jadran**čsJNS (1951) and **Bpv** (1951).

The red coloured points in the Fig. 2 are points of the Slovakian levelling network of the 1st order. They have known their mean sea level heights in both vertical reference frames **Bpv** (2018) a Jadrančsjns (1951) along with their known mean sea level differences between vertical reference frames Jadrančsjns (1951) and **Bpv** (1951) – see Tab. 1 (source of the data – Geodetical and Cartographical Institute Bratislava).

Point ID	Jadrančsj _{NS} (1951)	Difference Jadrančsjn s (1951) – Bpv (1951)	Bpv (valid in 2018)	Year of observati on	Year of inspectio n	Y (S- JTSK) (Easting)	X (S- JTSK) (Northin g)
CZA-						575144.4	1278448.
520	189.0396	0.4022	188.6289	3.7.2000	2000	0	87
CZA-						577690.0	1275092.
544	218.2093	0.4011	217.8081	2.6.1993	2002	0	81
CZA-						578462.1	1237279.
662.01	151.7957	0.4019	151.3466	23.9.1992	2000	4	37
CZA-						577324.4	1232601.
673	152.6300	0.4019	152.1968	3.7.2000	2000	0	36
ZBZC-						576333.7	1219729.
544	154.6547	0.4017	154.1452	5.5.1999	1999	9	46

 Tab. 1 Geodetical data of points of the 1st order levelling network in Jadrančsus a Bpv (all horizontal and vertical values are in meters).

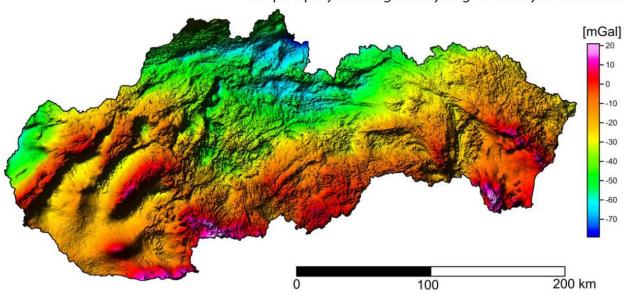
The yellow coloured points are points of the Slovakian levelling network of the 2nd order. They have known their mean sea level heights in vertical reference frame **Bpv** (2018) and the mean sea level differences between vertical reference frames **Jadran**čsjns (1951) a **Bpv** (1951) are also known on these points – see Tab. 2 (source of data – Geodetical and Cartographical Institute Bratislava).

Tab. 2 Geodetical data of points of the 2nd order levelling network (all horizontal and vertical values are in meters).

Point ID	Bpv (2018)	Jadrančsjns (1951) – Bpv (1951)	Y (S- JTSK) (Easting)	X (S-JTSK) (Northing)
ZBZC-539	155.0229	0.4017	576105.64	1220244.48
ZBZC-540	154.6666	0.4017	576293.36	1219901.90
ZBZC-541	154.6824	0.4017	576331.94	1219830.29

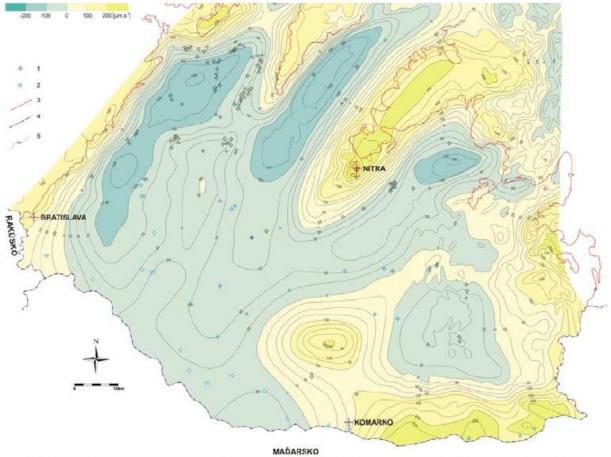
ZBZC-544	154.1453	0.4017	576333.79	1219729.46
ZA18-				
511.02	145.4447	0.4019	588055.69	1243611.38
ZA18-513	145.7287	0.4020	588021.15	1244552.74
ZA18-				
513.02	145.6217	0.4020	588271.87	1244870.79
ZA18-530	146.4116	0.4023	589184.73	1249733.66
ZA18-532	145.3157	0.4023	589261.04	1249883.44
ZA10-517	145.3348	0.4026	586200.15	1259252.89
ZA10-518	144.6217	0.4026	586324.41	1259080.03
ZA10-520	145.0833	0.4025	586408.11	1258685.29
ZA2-501	150.9765	0.4034	582970.64	1272512.62
ZA2-502	151.9138	0.4034	582866.73	1272181.68
ZA2-503	143.4469	0.4036	582803.78	1271952.21
ZA1-505	140.7220	0.4038	578371.14	1279829.77
ZA1-510	143.1379	0.4037	579805.54	1279212.52
ZA1-516	152.5220	0.4033	581033.45	1278457.07
ZA1-521	147.0887	0.4035	582349.61	1276818.83
ZA1-522	157.8125	0.4032	582329.15	1276659.97
ZA1-525	152.7186	0.4034	582464.34	1276472.47
ZA1-526	149.4408	0.4035	582626.21	1276183.70
ZA1-537	142.2484	0.4036	583167.77	1273182.85
ZA1-539	145.5621	0.4035	583134.29	1272905.53
ZA2-500	149.7181	0.4034	583008.26	1272776.10
CZA-501	141.5229	0.4038	572785.25	1279759.34
CZA-503	152.7604	0.4035	573295.73	1279656.07
CZA-505	159.6769	0.4033	573585.90	1279603.79
CZA-506	162.8133	0.4032	573568.09	1279381.32
CZA-508	166.2824	0.4030	573504.27	1279260.68
CZA-509	176.0520	0.4027	573547.03	1279169.67

In the 3rd column of the Tab. 1 and Tab. 2 are presented the mean sea level differences between vertical reference frames **Jadran**_{ČSJNS} (1951) and **Bpv** (1951) originating from mean sea level heights in both vertical reference frames of that time period (around the year 1951) as provided by Geodetical and Cartographical Institute Bratislava.


To verify the correctness of the determination of the mean sea level differences between two vertical reference frames on any point in the area of interest, we used 5 points of the 1st order levelling network (ČSJNS), which are located nearby (less than 10 km away from the

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

rivers Morava and Danube). In the Tab. 1 are presented their horizontal and vertical data along with the mean sea level differences between **Jadran**čsjns (1951) a **Bpv** (1951).


3.1.2 Verification of the computation of the vertical mean sea level differences between two vertical reference frames

As can be seen in the map of full Bouguer's anomalies of acceleration of gravity in Slovakia (Fig. 3), (source – Slovak Academy of Science, Slovenská akadémia vied – SAV) and of a part of Danube lowland (Fig. 4) as presented by (*Milička, 2017*), we estimated the Bouguer's anomalies for all 5 points of the 1st order levelling network and the estimations are illustrated in the Tab. 3.

Mapa úplných Bouguerových gravitačných anomálií

Fig. 3. Map of full Bouguer's anomalies of acceleration of gravity in Slovakia.

Obr. 4: Mapa Bougerových anomálií v podunajskej panve podľa Šefara et al. (1987).

Legenda k obr. 4:

1-vrty uhľovodíkového prieskumu 2-geotermálne vrty, 3-hranica panvy, 4-štátna hranica, 5-izolínie gravitačných Bougerových anomálií v μms⁻².

Fig. 4. Map of full Bouguer's anomalies of acceleration of gravity in the Danube lowland in Slovakia.

Tab. 3 Estimated values of full Bouguer's anomalies of acceleration of gravity in the Danube
lowland for points of the 1st order levelling network.

Point ID	Location of the point	Estimated value of Bouger's anomaly (mGal)
CZA-520	Bratislava I – Staré Mesto, Brnianska 31	$\Delta g_{\text{CZA-520}} = (g - \gamma)_B = 12.5$
CZA-544	Bratislava IV – Lamač, Hodonínska 16	$\Delta g_{\text{CZA-544}} = (g - \gamma)_B = 12.5$
CZA-662.01	Veľké Leváre, district Malacky	$\Delta g_{\text{CZA-662.01}} = (g - \gamma)_B = -$ 40.0
CZA-673	Moravský Svätý Ján, district Senica	$\Delta g_{\text{CZA-673}} = (g - \gamma)_B = -40.0$
ZBZC-544	Sekule – Brodské, state border	$\Delta g_{ZBZC-544} = (g - \gamma)_B = -40.0$

After estimation of full Bouguer's anomalies of acceleration of gravity on the levelling points of the 1st order levelling network, it was possible to compute the Fay's anomalies of acceleration of gravity in free air for all 5 points of the 1st order levelling network according to the equation (12). These values are presented in the Tab. 4.

Tab. 4 Fay's anomalies of acceleration of gravity in free air on the points of the 1st order levelling network.

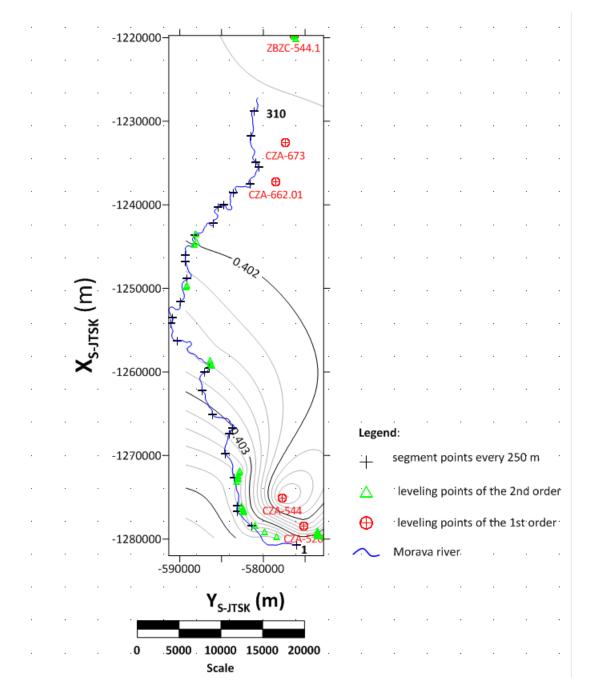
	ing network.	
Point ID	$H_{Bpv}(m)$	Fay's anomalies of acceleration of gravity in free air (mGal)
CZA-520	188.6289	$\Delta g_{F(CZA-520)} = (g - \gamma)_F = (g - \gamma)_B + 0.1119H = 33.608$
CZA-544	217.8081	$\Delta g_{F(CZA-544)} = (g - \gamma)_F = (g - \gamma)_B + 0.1119H = 36.873$
CZA- 662.01	151.3466	$\Delta g_{\text{F(CZA-662.01)}} = (g - \gamma)_F = (g - \gamma)_B + 0.1119 H = -23.064$
CZA-673	152.1968	$\Delta g_{\text{F(CZA-673)}} = (g - \gamma)_F = (g - \gamma)_B + 0.1119 H = -22.969$
ZBZC-544	154.1453	$\Delta g_{\text{F(ZBZC-544)}} = (g - \gamma)_F = (g - \gamma)_B + 0.1119H = -22.751$

After this step, according to the equation (11), we were able to calculate the earth's field gravity correction C_{CD}^2 between two points (in the equation (11) symbolically labelled as C and D). The results of this calculation are demonstrated in the Tab. 5, where symbolical labelling C and D in the equation (11) was replaced by concrete point ID's of the 1st column.

Tab. 5 Computation of earth's field gravity corrections C_{CD}^2 between levelling points of the 1st order.

Segments	Levelling height	Mean value of Fay's	Earth's field gravity					
•	0 0	•	e ;					
between two	differences between	anomalies between	correction C_{CD}^2 between					
points	points	two points	two points					
	$\Delta H_{Bpv(CD)} = \Delta h_{CD}^{mer}$	$\Delta g_{\rm F(CD)} = (g - \gamma)_m$	$C_{CD}^{2} = 0.0010193 (g - \gamma)_{m} \Delta h_{CD}^{mer}$					
	(m)	(mGal)	(mm)					
CZA-544 - CZA-		35.240	1.05					
520	29.1792							
CZA-662.01 -		6.904	-0.23					
CZA-544	-33.2308							
CZA-673 - CZA-		-23.017	-0.02					
662.01	0.8503							
ZBZC-544 -		-22.860	-0.05					
CZA-673	1.9484							
Sum of all earth	Sum of all earth's field gravity corrections C ² on the whole							
	segment:							

From the computed values of earth's field gravity corrections for the height differences between concrete pair of the 1st order levelling points (Tab. 4, column 4) and after taking into account the equation (14) is clear that their impact on the individual height differences (Tab 1. column 3) determined in 1951 is insignificant and we can label these differences between two vertical reference frames **Jadran**čsJNS (1951) a **Bpv** (1951) in the border area between Slovakia and Austria as minor.


Similarly, we also can adopt the same assumption for the differences between **Jadran**čsJNS (1951) a **Bpv** (1951) on the levelling points of the 2nd order (Tab. 2, column 3).

So, it is unambiguously possible to state that both levelling lines (levelling line of the 1st order - see Tab 1. and levelling line of the 2nd order – see Tab. 2) have reliably determined the values of their mean sea level differences between vertical reference frames JadrančsJNS (1951) a Bpv (1951) on their levelling points.

This data set (levelling points of the 1st and 2nd order with their known mean sea level height differences between **Jadran**_{ČSJNS} (1951) a **Bpv** (1951)) serves as an input data set for the interpolation of values of mean sea level height differences between **Jadran**_{ČSJNS} (1951) a **Bpv** (1951) vertical reference frames for all individual points each other 250 m away and geographically located in the middle of Morava and Danube river (they all also have horizontal S-JTSK coordinates). Starting point is in the confluence of Dyje and Morava river, then continuing in the middle of the border river Morava, up to the confluence of rivers Morava and Danube at the village of Devín near Bratislava and then continuing in the middle of Danube river up to the Lafranconi bridge in Bratislava.

Their mean sea level height differences were determined by Kriging's interpolation method in the whole area of interest. The results are graphically illustrated in the Fig. 5.

In a very few locations (2 or 3 locations), where the Kriging's method could not be applied, the mean sea level height differences between vertical reference frames **Jadran**čsJNS (1951) and **Bpv** (1951) were determined by linear interpolation of the nearby points, which still had the mean sea level height differences determined by Kriging's method.

Fig. 5. Interpolated mean sea level height differences between **Jadran**č_{SJNS} (1951) a **Bpv** (1951) on the rivers Morava and Danube up to Lafranconi bridge in Bratislava (total segment length: 78.5 km).

On the Fig. 5 is pictured a small subset of the total amount of 315 points for demonstration purposes only. Final values of the mean sea level height differences between vertical reference frames **Jadran**čsJNS (**1951**) and **Bpv** (**1951**) for the whole segment of the Morava river (78.5 km long with 315 points each other 250 m away) along with their horizontal S-JTSK coordinates are published in the Technical report (*Mojzeš, Kalafut, 2018*) created for the needs of Slovak Water Management Enterprise, state company, subsidiary Bratislava. Their values oscillate around 40 cm with 2 mm deviation. The lowest value is 0.4018 m and the highest value is 0.4038 m. These values were used for transformation between both vertical frames **in the past**.

The accuracy of the determination of the mean sea level height differences can be estimated by means of the law of error accumulation, where for both vertical reference frames is taken into account the mean error after adjustment of the levelling network, which is lesser than 10 mm (*Vykutil, 1978*):

$$\sigma_{\Delta H} = \sqrt{(\sigma_{H^A}^2 + \sigma_{H^B}^2)} = 14 \,\mathrm{mm}$$

The need for the vertical transformation between two different vertical reference frames (in our case **Jadran**čsjns (1951) a **Bpv** (1951)) can also arise in another locations in Slovakia (like the area of oil refinery SLOVNAFT in Bratislava). From scientific point of view, it would be suitable and valuable to determine the mean sea level height differences between both vertical reference frames in the whole levelling network in Slovakia. This would prevent possible errors in their practical applications.

4. Computation of the MSL height differences $\Delta H_{Adria-Bpv}$ between currently valid Austrian Adriatic vertical reference frame (System der Normalorthometrischen Höhen mit Pegel Adria Triest 1875) and currently valid Slovakian vertical reference frame Bpv (Balt po vyrovnaní) in the middle of border river Morava

The computation of the MSL height differences $\Delta H_{Adria-Bpv} = H_{Adria} - H_{Bpv}$ (further in text referred to as $\Delta H_{Adria-Bpv}$ only) between currently valid vertical reference frames in Austria (**System der Normalorthometrischen Höhen mit Pegel Adria Triest 1875**, further in text referred to as **Adria** only) and Slovakia (**Balt po vyrovnaní – Bpv**, further in text referred to as **Bpv**) was realized in the same area of interest like described in the Chapter 3 (in the middle of the border river Morava on the segment about 78.5 km long, with 315 points, each other 250 m away).

The method of the computation was analogical like the one described in the Chapter 3, however, with one important distinction: in contrast to the computation described in the Chapter 3, where were exclusively used Slovakian levelling points only, with their historical MSL heights in both vertical reference frames (Adria and Bpv), here we used not only Slovakian levelling points with their currently valid MSL heights in Slovakian vertical reference frame Bpv, located on the Slovakian side of the border river Morava, but we also used the Austrian levelling points with their currently valid MSL heights in Austrian vertical reference frame (Adria). They are located on the Austrian side of the border river Morava.

Moreover, it is also necessary to mention the following important facts (analogical assertions are also valid for the calculations described in the Chapters 5 and 6):

- Slovakian levelling points have their MSL heights directly determined by the method of precise levelling in the Slovakian vertical reference frame Bpv (H_{Bpv}), however, they do *not* have their MSL heights directly determined by the method of precise levelling in the Austrian vertical reference frame Adria (H_{Adria})
- Austrian levelling points have their MSL heights directly determined by the method of precise levelling in the Austrian vertical reference frame Adria (H_{Adria}), however, they do *not* have their MSL heights directly determined by the method of precise levelling in the Slovakian vertical reference frame Bpv (H_{Bpv})

In order to be able to determine the MSL heights differences $\Delta H_{Adria-Bpv}$ on these Slovakian and Austrian levelling points, which then would serve as input data for the Kriging's interpolation method for the determination of the MSL height differences $\Delta H_{Adria-Bpv}$ on the set of 315 points located in the middle of the border river Morava, it was absolutely necessary to determine their MSL heights in the other vertical reference frame. It means, on the Slovakian levelling points was necessary to determine the MSL (normal orthometric) heights in the Austrian Adriatic vertical reference frame H_{Adria} and on the Austrian levelling points was necessary to determine the MSL (normal Molodensky's) heights in the Slovakian Baltic vertical reference frame H_{Bpv} . The practical use of precise levelling method was not real, first of all due to economical, but also due to time reasons. As an alternative, we decided to utilize the existence of digital models of Slovakian quasi-geoid (providing normal Molodensky's)

MSL heights in conjunction with global ellipsoidal heights) and of Austrian geoid (providing normal orthometric MSL heights in conjunction with global ellipsoidal heights). Both these (quasi)geoid models have sufficient overlap to the neighbouring country in the area of interest (border river Morava).

The procedure of the computation was as follows:

- from the input horizontal and vertical geodata of Slovakian levelling points (X_{S-JTSK} , Y_{S-JTSK} , H_{Bpv}), which have their MSL (normal Molodensky's) heights determined by direct observations of the precise levelling method in the Slovakian Baltic vertical reference frame Bpv, were determined their geocentric (global) horizontal coordinates $\phi_{ETRS-89}$, $\lambda_{ETRS-89}$ and geocentric ellipsoidal heights h_{GRS-80} by using 3D (three-dimensional) 7-parameter transformation utilizing Slovakian quasi-geoid model,
- from the input horizontal and vertical geodata of Austrian levelling points (X_{GK_M-34} , Y_{GK_M-34} , H_{Adria}), which have their MSL (normal orthometric) heights determined by direct observations of the precise levelling method in the Austrian Adriatic vertical reference frame Adria, were determined their geocentric (global) horizontal coordinates $\phi_{ETRS-89}$, $\lambda_{ETRS-89}$ and geocentric ellipsoidal heights h_{GRS-80} by using 3D (three-dimensional) 7-parameter transformation utilizing Austrian geoid model.

By these transformations, we achieved that all Austrian and Slovakian levelling points on both sides of Morava river, had determined their geocentric ellipsoidal heights h_{GRS-80} . Hence, it was possible to determine the normal orthometric MSL heights in currently valid Austrian vertical reference frame Adria on Slovakian levelling points utilizing the Austrian geoid model. Similarly, it was possible to determine the normal Molodensky's MSL heights in currently valid Slovakian Baltic vertical reference frame Bpv on Austrian levelling points utilizing Slovakian quasi-geoid model. It practically means that on the whole set of Austrian and Slovakian levelling points was possible to determine their MSL height differences $\Delta H_{Adria-Bpv}$.

As input data for the determination of MSL height differences $\Delta H_{Adria-Bpv}$ on Austrian and Slovakian levelling points were used:

- 57 Austrian levelling points with their currently valid MSL normal orthometric heights in Austrian Adriatic vertical reference frame Adria determined by precise levelling and located on the Austrian side of Morava river,
- 52 Slovakian levelling points with their currently valid MSL normal Molodensky's heights in Slovakian Baltic vertical reference frame Bpv determined by precise levelling and located on the Slovakian side of Morava river.

The geodata of 57 Austrian levelling points provided Austrian Federal Office for Calibration and Surveying in Vienna, Austria (Bundesamt fur Eich- und Vermessungswessen Wien, <u>www.bev.gv.at</u>) and they can be seen in the Tab. 6. The geodata of 52 Slovakian levelling points were provided by Geodetical and Cartographical Institute, Bratislava, Slovakia (Geodetický a kartografický ústav Bratislava, <u>www.gku.sk</u>) and part of them was taken directly from the geoportal ZBGIS (<u>https://zbgis.skgeodesy.sk</u>) and are also declared in the Tab. 6.

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

It is important to say on this place that also on the Slovakian side was chosen the same number of levelling points (57) as on Austrian side. The reason for exclusion of 5 Slovakian levelling points (4424BA-1021, 4424BA-1024, C8-516, CZA-610 a CZC-531 labelled with an asterisk (*) in the Tab. 6) was the fact that in the Austrian geoid model was impossible to perform a reliably interpolation in the location of above mentioned Slovakian levelling points (they were on the edge of the area covered by the Austrian geoid model).

	n levelling			an levelling points. Slovakian levelling points – 57 points with				
	h approxima		-		mate horizonta			
coord	linates and	currently	valid	currently valid normal Molodensy's MSL				
-	e normal or			heights (Bpv) determined by precise levelling				
heights	(Adria) dete		y precise					
	levelling					-		
Point	Үск_м-за	Хск_м-	HAdria	Point ID	Xs-jtsk (m)	Ys-jtsk	HBpv	
ID 41200 A	(m)	34 (m)	(m)	0441344	1 007 100 07	(m)	(m)	
41209A	37 866.00	5 367	173.805	3441MA-	1 227 102.07	580 246.75	154.567	
41210A	27.020.80	023.00	175.004	53 3443MA-	1 252 510.72	501 177 65	149 604	
41210A	37 939.80	5 367 507.50	175.994	3445MA- 42	1 232 310.72	591 177.65	148.694	
41211A	37 952.00	5 368	167.626	4422BA-	1 274 474.45	579 239.59	256.721	
7121111	57 752.00	078.00	107.020	1002	1 274 474.43	517 237.37	230.721	
41218	38 915.12	5 370	150.437	AZR-529	1 280 618.80	569 354.32	134.342	
_		180.92						
41219	39 071.09	5 370	149.229	C59-509	1 230 730.16	571 396.88	173.259	
		285.23						
41220A	39 202.00	5 369	149.393	CZA-501	1 279 759.34	572 785.25	141.523	
		893.00						
41221A	39 324.00	5 369	146.128	CZA-503	1 279 656.07	573 295.73	152.761	
	10.101.00	811.00	1.7.0.011				1 7 0 1 7 7	
41232A	40 421.90	5 373	153.014	CZA-505	1 279 603.79	573 585.90	159.677	
41022	10 966 11	219.10	150 755	C7A 506	1 270 291 22	572 568 00	162.012	
41233	40 866.41	5 373 071.43	150.755	CZA-506	1 279 381.32	573 568.09	162.813	
41236	40 257.43	5 373	158.419	CZA-508	1 279 260.68	573 504.27	166.283	
+1230	+0 237.+3	731.17	150.417	CLA-500	1 279 200.00	575 504.27	100.205	
41253	42 140.36	5 377	154.971	CZA-509	1 279 169.67	573 547.03	176.052	
		893.23						
41256	42 322.47	5 377	153.288	CZA-520	1 278 448.87	575 144.40	188.629	
		871.76						
41285A	43 455.60	5 384	153.318	CZA-544	1 275 092.81	577 690.00	217.808	
		935.00						
41285B	44 153.63	5 385	153.532	CZA-644	1 242 166.13	576 971.78	155.882	
410050	44.01 4.70	118.02	1.51.005		1 007 070 07		1.51.014	
41285C	44 316.50	5 384	151.086	CZA-	1 237 279.37	578 462.14	151.346	

Tab. 6 Geodata of Austrian and Slovakian levelling points.

		941.20		662.01			
41285D	44 319.50	5 384	151.213	CZA-673	1 232 601.36	577 324.40	152.197
		928.70	1011210	0211070	1 202 001100	0,,,02,,,0	1021197
41285E	44 320.00	5 384	151.829	ZA1-505	1 279 829.77	578 371.14	140.722
		848.00					
41184A	37 229.00	5 360	144.824	ZA1-510	1 279 212.53	579 805.55	143.138
		807.20					
41184B	37 267.49	5 360	144.072	ZA1-516	1 278 457.07	581 033.46	152.522
		755.07					
41184C	37 163.00	5 360	144.333	ZA1-521	1 276 818.83	582 349.61	147.088
		653.30					
41184D	37 160.20	5 360	144.918	ZA1-522	1 276 659.97	582 329.15	157.812
		658.80					
41184E	37 171.00	5 360	141.111	ZA1-525	1 276 472.47	582 464.35	152.719
		648.00					
41095C	44 914.40	5 345	148.390	ZA1-526	1 276 183.70	582 626.21	149.441
		028.90					
41096	45 410.20	5 344	150.358	ZA1-537	1 273 182.86	583 167.77	142.248
		958.30					
41096A	45 175.70	5 344	150.133	ZA1-539	1 272 905.53	583 134.29	145.562
		975.80					
41097	45 360.90	5 344	145.920	ZA2-500	1 272 776.10	583 008.26	149.718
4400 - 4	15.050.00	946.00				700 070 44	1 7 0 0 7 7
41097A	45 378.20	5 344	144.253	ZA2-501	1 272 512.63	582 970.64	150.977
41007	45 506 00	945.90	1 4 1 0 2 2	74.0.500	1.070.101.60	500 066 70	151.012
41097	45 506.80	5 344	141.232	ZA2-502	1 272 181.68	582 866.73	151.913
41000	45 557 00	946.95	1 40 00 4	740.502	1 071 050 01	502 002 70	1 4 2 4 4 7
41099	45 557.90	5 344	140.224	ZA2-503	1 271 952.21	582 803.78	143.447
41102	45 598.10	985.00 5 344	150.630	ZA5-505	1 273 262.42	580 822.62	163.994
41102	45 598.10		130.030	ZA3-303	1 2/3 202.42	380 822.02	105.994
41103	45 599.50	950.10	150.622	ZA10-517	1 259 252.89	586 200.15	145.335
41105	45 599.50	5 344 941.90	130.022	ZA10-317	1 239 232.09	380 200.13	145.555
41074	46 930.40	5 339	144.704	ZA10-518	1 259 080.03	586 324.41	144.622
41074	40 750.40	325.20	144.704	ZA10-310	1 237 000.03	500 524.41	144.022
41075	46 856.86	5 339	141.437	ZA10-520	1 258 685.29	586 408.11	145.084
41075	+0 050.00	414.84	171.737	21110 520	1 250 005.25	500 400.11	145.004
41075B	46 648.46	5 339	144.603	ZA18-	1 243 611.38	588 055.69	145.445
110700	10 0 10, 10	476.12	111005	511.02			1 101 10
41076	46 324.37	5 339	143.730	ZA18-513	1 244 552.74	588 021.15	145.728
		646.66					
38840C	46 174.39	5 335	197.460	ZA18-	1 244 870.79	588 271.87	145.622
		628.68		513.02			
38840D	46 495.60	5 335	224.317	ZA18-530	1 249 733.66	589 184.73	146.412

		785.80					
38840E	46 605.59	5 335 453.05	285.792	ZA18-532	1 249 883.44	589 261.04	145.316
38849	47 902.80	5 334 089.10	161.604	ZA18-537	1 251 644.28	589 388.25	143.966
38856	49 795.00	5 333 494.70	148.519	ZA19-509	1 251 583.89	586 310.29	146.381
38867	51 495.00	5 332 494.99	141.247	ZA21-507	1 244 602.79	582 269.87	150.091
38868D	53 818.80	5 331 729.40	141.688	ZA23-505	1 240 779.73	578 765.43	152.865
41138A	40 138.23	5 352 720.15	144.688	ZA23-511	1 242 413.49	580 750.82	151.106
41138B	40 327.70	5 353 055.60	143.294	ZAZB-520	1 229 017.49	581 356.84	150.244
41138C	39 979.80	5 353 247.40	143.672	ZBZC-509	1 226 781.94	576 932.10	152.050
41138D	39 974.76	5 353 713.40	141.870	ZBZC-539	1 220 244.48	576 105.64	155.023
41201	37 912.83	5 363 771.23	149.856	ZBZC-540	1 219 901.90	576 293.36	154.667
41202	38 063.00	5 363 810.37	149.130	ZBZC-541	1 219 830.29	576 331.94	154.682
41203	38 063.02	5 363 811.00	150.748	ZBZC-544	1 219 729.46	576 333.79	154.145
41268	39 883.80	5 380 345.67	162.033	ZC7-513	1 218 886.94	572 948.74	161.650
41269	40 020.55	5 380 401.75	157.634	ZNSBA2- 507	1 287 533.95	577 099.13	134.443
41270	40 570.35	5 380 659.10	153.622	ZNSBA11- 502	1 282 500.93	569 173.24	135.438
41271A	41 054.70	5 381 112.35	155.754	4424BA- 1021 [*]	1 290 550.66	562 356.95	128.688
41299	42 162.40	5 390 293.60	168.543	4424BA- 1024 [*]	1 294 172.28	566 034.08	134.707
41300	42 162.43	5 390 293.64	170.040	C8-516 [*]	1 258 610.34	573 389.83	212.189
41301	42 069.50	5 390 442.65	170.412	CZA-610*	1 254 610.75	577 682.49	167.175
41302	41 916.99	5 390 345.39	168.568	CZC-531*	1 226 422.39	567 555.30	167.166

As the first step, it was necessary to determine the MSL height differences $\Delta H_{Adria-Bpv}$ for all 109 Slovakian and Austrian levelling points. These differences on all 109 levelling points

became the input values for the determination of the MSL height differences $\Delta H_{Adria-Bpv}$ for all 315 points (each other 250 m away) in the area of interest (in the middle of Morava river, about 78.5 km long segment). The MSL height differences $\Delta H_{Adria-Bpv}$ for all 109 levelling points were determined

by using Slovakian quasi-geoid model DVRM05, ver. 05.2005 with its height (undulation) accuracy of about 3 cm (the mean value of residuals – 1σ on testing points is 34 mm, see <u>https://www.geoportal.sk/sk/geodeticke-zaklady/geodeticke-systemy-transformacie/</u>), which serves for height transformation of global ellipsoidal heights related to geocentric GRS80 ellipsoid onto normal Molodensky's heights in Slovakian Baltic vertical reference frame Bpv, by using Austrian geoid model with its height (undulation) accuracy of about 3 cm (the mean value of residuals – 1σ on testing points is 35 mm, see <u>http://www.bev.gv.at/portal/page? pageid=713,2363173& dad=portal& schema=PO</u> RTAL), which serves for height transformation of global ellipsoidal heights related to

geocentric GRS80 ellipsoid onto normal orthometric heights in Austrian Adriatic vertical reference frame Adria.

Of course, both (quasi)geoids must have sufficient overlap to neighbouring countries (at least several km). Both mentioned (quasi)geoid models comply to this requirement. It is also important to state that both models (Austrian geoid and Slovakian quasi-geoid) contain mean tide model.

Schematic coverage of the territory by Slovakian quasi-geoid is illustrated in the Fig. 6. (see the rectangle bordered by black lines). Slovakian quasi-geoid covers the territory in the direction from the south to the north between latitudes of $N47^{\circ}30'10.00800''$ and $N49^{\circ}59'49.99200''$ and in the direction from the west to the east between longitudes $E16^{\circ}30'15.01200''$ and $E22^{\circ}59'44.98800''$.

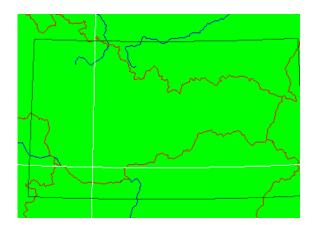


Fig. 6. Geographical extent of Slovakian quasi-geoid DVRM05, ver. 05.2005.

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

Schematic coverage of the territory by Austrian geoid is illustrated in the Fig. 7 (see the rectangle bordered by black lines). Austrian geoid covers the territory in the direction from the south to the north between latitudes of N46°20′30.00000"and N49°03′15.00000" and in the direction form the west to the east between longitudes E9°28′52.50000" a E17°12′22.50000".

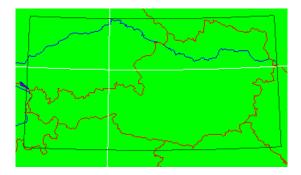


Fig. 7. Geographical extent of Austrian geoid.

The overlap of both models in the border river Morava in the south – north direction corresponds to the value of 1°33′04.992"(approximately 172.5 km) and in the west – east direction corresponds to the value of 0°42′07.488"(approximately 50.3 km). This overlap is fully enough for our purposes of the determination of MSL height differences $\Delta H_{Adria-Bpv}$ in the border area between Austria and Slovakia.

Although the horizontal absolute accuracy of Austrian and Slovakian levelling points is quite low and generally is on the level of 1 - 5 m (except a few exceptions, first of all on Slovakian levelling points, where in some cases, the horizontal accuracy is on the level of a few cm), this deficit of horizontal accuracy has practically no real negative impact for the determination of MSL height differences $\Delta H_{Adria-Bpv}$ between vertical reference frames Adria and Bpv, particularly when we take into account the following key facts:

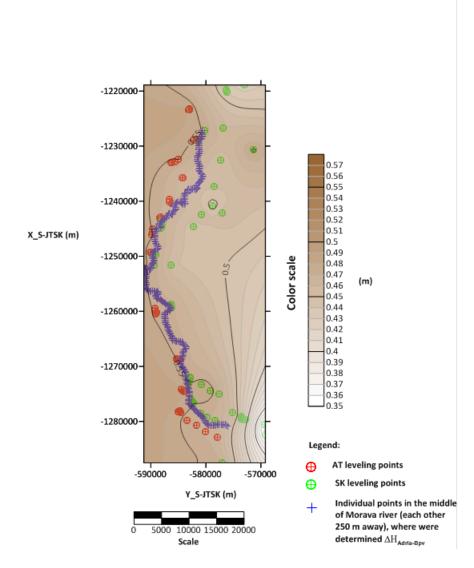
- the whole nearby area of border river Morava on Austrian Slovakian border is practically a plane,
- the step of discrete nodes of the grid of Slovakian quasi-geoid model, in which the quadratic interpolation is carried out for the determination of quasi-geoid heights (undulations) for the points outside the grid nodes is about 600 m x 600 m,
- the step of discrete nodes of the grid of Austrian geoid model, in which the quadratic interpolation is carried out for the determination of geoid heights (undulations) for the points outside the grid nodes is about 500 m x 500 m.

In the Tab. 7 are illustrated the MSL height differences $\Delta H_{Adria-Bpv}$ on Austrian and Slovakian levelling points determined by the method described above. To repeat it in short, the MSL heights in the Slovakian Baltic vertical reference frame Bpv on Austrian levelling points were obtained by using Slovakian quasi-geoid model and the MSL heights in the Austrian Adriatic vertical reference frame on Slovakian levelling points were obtained by using Austrian geoid model.

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

The MSL height differences $\Delta H_{Adria-Bpv}$ on Austrian levelling points lie in the interval of 0.526 m – 0.563 m (their spread is 0.037 m) and on Slovakian levelling points lie in the interval of 0.357 m – 0.557 m (their spread is 0.200 m). Quite large (20 cm) spread of the $\Delta H_{Adria-Bpv}$ values on Slovakian levelling points is caused by two significant MSL height differences $\Delta H_{Adria-Bpv}$ on the point AZR-529 (0.357 m) and the point ZNSBA11-502 (0.358 m). Without these two points, the spread would be 0.097 m. As a possible explanation of this fact (quite large spread of $\Delta H_{Adria-Bpv}$ differences on Slovakian levelling points) can be that their normal (Molodensky's) heights were not homogeneously determined. Moreover, both points AZR-529 and ZNSBA11-502 need to be verified by a new precise levelling.

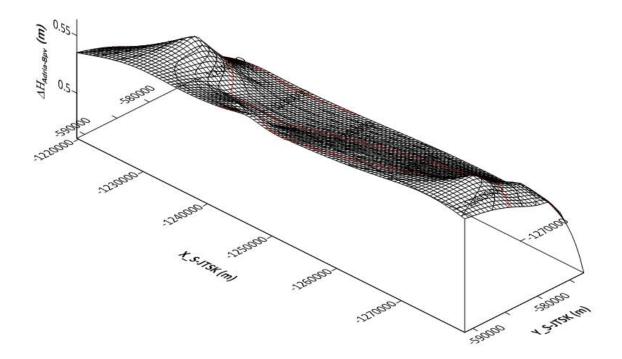
Austrian	levelling p	ooints – 57	points	Slovakian levelling points – 52 points			
Point	H _{Adria}	$H_{Bpv}(m)$	$\Delta H_{Adria-Bpv}$	Point ID	H _{Adria}		$\Delta H_{Adria-Bpv}$
ID	(m)		(m)		(<i>m</i>)	(<i>m</i>)	
	197.460	196.903	0.557	3441MA-	155.115	154.567	0.548
38840C				53			
	224.317	223.760	0.557	3443MA-	149.246	148.694	0.552
38840D				42			
	285.792	285.238	0.554	4422BA-	257.278	256.721	0.557
38840E				1002			
38849	161.604	161.059	0.545	AZR-529	134.699	134.342	0.357
38856	148.519	147.978	0.541	C59-509	173.812	173.259	0.553
38867	141.247	140.711	0.536	CZA-501	141.983	141.523	0.460
38868D	141.688	141.154	0.534	CZA-503	153.235	152.761	0.474
41074	144.704	144.143	0.561	CZA-505	160.159	159.677	0.482
41075	141.437	140.876	0.561	CZA-506	163.297	162.813	0.484
41075B	144.603	144.042	0.561	CZA-508	166.765	166.283	0.482
41076	143.730	143.167	0.563	CZA-509	176.537	176.052	0.485
41095C	148.390	147.840	0.550	CZA-520	189.146	188.629	0.517
41096	150.358	149.810	0.548	CZA-544	218.347	217.808	0.539
41096A	150.133	149.585	0.548	CZA-644	156.399	155.882	0.517
	145.920	145.372	0.548	CZA-	151.858	151.346	0.512
41097				662.01			
41097A	144.253	143.705	0.548	CZA-673	152.707	152.197	0.510
41098	141.232	140.685	0.547	ZA1-505	141.260	140.722	0.538
41099	140.224	139.678	0.546	ZA1-510	143.678	143.138	0.540
41102	150.630	150.083	0.547	ZA1-516	153.066	152.522	0.544
41103	150.622	150.075	0.547	ZA1-521	147.638	147.088	0.550
41138A	144.688	144.140	0.548	ZA1-522	158.362	157.812	0.550
41138B	143.294	142.747	0.547	ZA1-525	153.270	152.719	0.551
41138C	143.672	143.123	0.549	ZA1-526	149.994	149.441	0.553
41138D	141.870	141.322	0.548	ZA1-537	142.801	142.248	0.553
41184A	144.824	144.274	0.550	ZA1-539	146.114	145.562	0.552
41184B	144.072	143.522	0.550	ZA2-500	150.268	149.718	0.550


41184C144.333143.782 0.551 ZA2-501151.525150.97741184D144.918144.367 0.551 ZA2-502152.459151.91341184E141.111140.560 0.551 ZA2-503143.991143.44741201149.856149.310 0.546 ZA5-505164.550163.99441202149.130148.586 0.544 ZA10-517145.877145.33541203150.748150.204 0.544 ZA10-518145.164144.62241209A173.805173.253 0.552 ZA10-520145.626145.084175.994175.445 0.549 ZA18-145.981145.44541210A511.02511.02511.02511.02511.02	0.548 0.546 0.544 0.556 0.542 0.542
41184E141.111140.560 0.551 ZA2-503143.991143.44741201149.856149.310 0.546 ZA5-505164.550163.99441202149.130148.586 0.544 ZA10-517145.877145.33541203150.748150.204 0.544 ZA10-518145.164144.62241209A173.805173.253 0.552 ZA10-520145.626145.084175.994175.445 0.549 ZA18-145.981145.445	0.544 0.556 0.542
41201149.856149.310 0.546 ZA5-505164.550163.99441202149.130148.586 0.544 ZA10-517145.877145.33541203150.748150.204 0.544 ZA10-518145.164144.62241209A173.805173.253 0.552 ZA10-520145.626145.084175.994175.445 0.549 ZA18-145.981145.445	0.556 0.542
41202149.130148.586 0.544 ZA10-517145.877145.33541203150.748150.204 0.544 ZA10-518145.164144.62241209A173.805173.253 0.552 ZA10-520145.626145.084175.994175.445 0.549 ZA18-145.981145.445	0.542
41203150.748150.204 0.544 ZA10-518145.164144.62241209A173.805173.253 0.552 ZA10-520145.626145.084175.994175.445 0.549 ZA18-145.981145.445	
41209A173.805173.253 0.552 ZA10-520145.626145.084175.994175.445 0.549 ZA18-145.981145.445	0.542
175.994 175.445 0.549 ZA18- 145.981 145.445	
	0.542
412104	0.536
41210A J11.02	
41211A 167.626 167.077 0.549 ZA18-513 146.262 145.728	0.534
150.437 149.896 0.541 ZA18- 146.158 145.622	0.536
41218 513.02	
41219 149.229 148.692 0.537 ZA18-530 146.955 146.412	0.543
41220A 149.393 148.854 0.539 ZA18-532 145.860 145.316	0.544
41221A 146.128 145.590 0.538 ZA18-537 144.513 143.966	0.547
41232A 153.014 152.477 0.537 ZA19-509 146.893 146.381	0.512
41233 150.755 150.223 0.532 ZA21-507 150.594 150.091	0.503
41236 158.419 157.884 0.535 ZA23-505 153.357 152.865	0.492
41253 154.971 154.444 0.527 ZA23-511 151.626 151.106	0.520
41256 153.288 152.762 0.526 ZAZB-520 150.790 150.244	0.546
41268 162.033 161.486 0.547 ZBZC-509 152.572 152.050	0.522
41269 157.634 157.086 0.548 ZBZC-539 155.512 155.023	0.489
41270 153.622 153.077 0.545 ZBZC-540 155.153 154.667	0.486
41271A 155.754 155.202 0.552 ZBZC-541 155.168 154.682	0.486
41285A 153.318 152.768 0.550 ZBZC-544 154.630 154.145	0.485
41285B 153.532 152.985 0.547 ZC7-513 162.124 161.650	0.474
151.086 150.540 0.546 ZNSBA2- 134.984 134.443	0.541
41285C 507	
151.213 150.667 0.546 ZNSBA11- 135.796 135.438	0.358
41285D 502	
151.829 151.283 0.546 4424BA- Not Not	Not used
41285E 1021* used used	
168.543 167.984 0.559 4424BA- Not Not	Not used
41299 1024* used used	
170.040 169.481 0.559 C8-516 [*] Not Not	Not used
41300 used used	
170.412 169.852 0.560 CZA-610 [*] Not Not	Not used
41301 used used	
168.568 168.007 0.561 CZC-531 [*] Not Not	Not used

The MSL height differences $\Delta H_{Adria-Bpv}$ in the Tab. 7 (columns 4 and 8) constitute the input data for the determination of additional MSL height differences $\Delta H_{Adria-Bpv}$ for all 315 points

(each other 250 m away) in the area of interest (located in the middle of the border river Morava). These values were determined by Kriging's interpolation method and their graphical shape is illustrated in the Fig. 8.

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)


FIG Working Week 2020 Smart surveyors for land and water management Amsterdam, the Netherlands, 10–14 May 2020

Vertical differencies $\Delta H_{Adria-Bpv}$ (m) between austrian adriatic vertical reference system (Adria, Trieste) and slovakian baltic vertical reference system (Bpv, Kronstadt) on the border Morava river

Fig. 8. Vertical differences $\Delta H_{Adria-Bpv}$ between Austrian Adriatic vertical reference frame (Adria, Terst) and Slovakian Baltic vertical reference frame (Bpv, Kronštadt) on the border river Morava.

Another way of graphical illustration of the vertical differences $\Delta H_{Adria-Bpv}$ using orthographic projection can be seen in the Fig. 9.

Obr. 9. Vertical differences $\Delta H_{Adria-Bpv}$ between Austrian Adriatic vertical reference frame (Adria, Terst) and Slovakian Baltic vertical reference frame (Bpv, Kronštadt) on the border river Morava in orthographic projection.

The mean value of the MSL height differences $\Delta H_{Adria-Bpv}$ on all Austrian and Slovakian levelling points (together 109 points) is 0.534 m. Positive values of $\Delta H_{Adria-Bpv}$ mean that the initial point in Austrian Adriatic vertical reference frame Adria in Trieste (point with normal orthometric height $H_{Adria} = 0$ m) is lower with respect to the initial point in Slovakian Baltic vertical reference frame Bpv in Kronstadt (point with normal height $H_{Bpv} = 0$ m). In the Tab. 8, the residuals on individual levelling points are demonstrated. The root mean square (RMS) error $\sigma_0 = 33$ mm and mean error of arithmetic average $\sigma = 3$ mm of vertical differences $\Delta H_{Adria-Bpv}$ was computed from these residuals.

Points. Austrian levelling points – 57 points			Slovakian levelling points- 52 points		
Point $\Delta H_{Adria-Bpv}$ Residuals		Point ID	$\Delta H_{Adria-Bpv}$	Residuals	
ID	(m)	(m)		(m)	(m)
38840	0.557		3441MA-53	0.548	-0.014
C		-0.023			
38840	0.557		3443MA-42	0.552	-0.018
D		-0.023			
38840	0.554		4422BA-	0.557	-0.023
Е		-0.020	1002		
38849	0.545	-0.011	AZR-529	0.357	0.177
38856	0.541	-0.007	C59-509	0.553	-0.019
38867	0.536	-0.002	CZA-501	0.460	0.074
38868	0.534		CZA-503	0.474	0.060
D		0.000			
41074	0.561	-0.027	CZA-505	0.482	0.052
41075	0.561	-0.027	CZA-506	0.484	0.050
41075	0.561		CZA-508	0.482	0.052
В		-0.027			
41076	0.563	-0.029	CZA-509	0.485	0.049
41095	0.550		CZA-520	0.517	0.017
С		-0.016			
41096	0.548	-0.014	CZA-544	0.539	-0.005
41096	0.548		CZA-644	0.517	0.017
А		-0.014			
	0.548		CZA-	0.512	0.022
41097		-0.014	662.01		
41097	0.548		CZA-673	0.510	0.024
А		-0.014			
41098	0.547	-0.013	ZA1-505	0.538	-0.004
41099	0.546	-0.012	ZA1-510	0.540	-0.006
41102	0.547	-0.013	ZA1-516	0.544	-0.010
41103	0.547	-0.013	ZA1-521	0.550	-0.016
41138	0.548		ZA1-522	0.550	-0.016
Α		-0.014			
41138	0.547		ZA1-525	0.551	-0.017
B		-0.013			
41138	0.549	0.01-	ZA1-526	0.553	-0.019
C		-0.015		<u> </u>	
41138	0.548	0.044	ZA1-537	0.553	-0.019
D	0.770	-0.014		0.550	0.010
41184	0.550	-0.016	ZA1-539	0.552	-0.018

Tab. 8 Residuals of vertical differences $\Delta H_{Adria-Bpv}$ on Austrian and Slovakian levelling points.

Α					
41184	0.550		ZA2-500	0.550	-0.016
В		-0.016			
41184	0.551		ZA2-501	0.548	-0.014
С		-0.017			
41184	0.551		ZA2-502	0.546	-0.012
D		-0.017			
41184	0.551		ZA2-503	0.544	-0.010
Е		-0.017			
41201	0.546	-0.012	ZA5-505	0.556	-0.022
41202	0.544	-0.010	ZA10-517	0.542	-0.008
41203	0.544	-0.010	ZA10-518	0.542	-0.008
41209	0.552		ZA10-520	0.542	-0.008
А		-0.018			
41210	0.549		ZA18-	0.536	-0.002
A		-0.015	511.02		
41211	0.549		ZA18-513	0.534	0.000
A		-0.015			
	0.541		ZA18-	0.536	-0.002
41218		-0.007	513.02		
41219	0.537	-0.003	ZA18-530	0.543	-0.009
41220	0.539	0.005	ZA18-532	0.544	-0.010
A	0.500	-0.005	7.10.505	0.5.15	0.010
41221	0.538	0.004	ZA18-537	0.547	-0.013
A	0.527	-0.004	74.10.500	0.510	0.000
41232	0.537	0.002	ZA19-509	0.512	0.022
A 41222	0.522	-0.003	7.4.21.507	0.502	0.021
41233	0.532 0.535	0.002	ZA21-507	0.503	0.031
41236 41253	0.535	-0.001 0.007	ZA23-505 ZA23-511	0.492 0.520	0.042 0.014
41255	0.527	0.007	ZA23-511 ZAZB-520	0.546	-0.012
41250	0.547	-0.013	ZBZC-509	0.522	0.012
41269	0.548	-0.013	ZBZC-539 ZBZC-539	0.322	0.012
41209	0.545	-0.014	ZBZC-539 ZBZC-540	0.485	0.043
41270	0.552	-0.011	ZBZC-540 ZBZC-541	0.486	0.048
41271 A	0.332	-0.018	2020-341	0.400	0.0+0
41285	0.550	0.010	ZBZC-544	0.485	0.049
A	0.000	-0.016		0.105	0.072
41285	0.547	0.010	ZC7-513	0.474	0.060
B		-0.013	20,010		51000
41285	0.546	0.010	ZNSBA2-	0.541	-0.007
C		-0.012	507	0.0 11	0.007
41285	0.546		ZNSBA11-	0.358	0.176
D		-0.012	502		

41285	0.546		4424BA-	Not used	Not used
E		-0.012	1021*		
	0.559		4424BA-	Not used	Not used
41299		-0.025	1024^{*}		
41300	0.559	-0.025	C8-516 [*]	Not used	Not used
41301	0.560	-0.026	CZA-610*	Not used	Not used
41302	0.561	-0.027	CZC-531*	Not used	Not used

Exact numerical values of the MSL height differences $\Delta H_{Adria-Bpv}$ for all 315 points located in the middle of border river Morava are not presented here due to spatial reasons. Their values range in the interval of **0.515 m** – **0.558 m** (their spread is **0.043 m**).

5. Computation of the MSL height differences $\Delta H_{EVRF2007-Bpv}$ between currently valid Slovakian Baltic vertical reference frame Bpv and European vertical reference frame EVRF2007 in the middle of border river Morava

The computation of MSL height differences $\Delta H_{EVRF2007-B_{PV}} = H_{EVRF2007} - H_{B_{PV}}$ (in further text also referred to as $\Delta H_{EVRF2007-B_{PV}}$) was carried out by the same manner as described in the Chapter 4. The only difference in this case was that five additional Slovakian levelling points were included in the computation (4424BA-1021, 4424BA-1024, C8-516, CZA-610 a CZC-531, see Tab. 6), which were previously excluded due to their horizontal positions (they lie on the edge of area covered by Austrian geoid). All calculations were realized in the same area of interest (border river Morava) and for the same amount of 315 individual points located in the middle of the river Morava.

Since in the computations were also included Austrian levelling points, it is necessary to say that for the computation of MSL height differences $\Delta H_{EVRF2007-Bpv}$ on Austrian levelling points were considered their Bpv MSL heights determined by using Slovakian quasi-geoid model DVRM05, whereas the MSL heights on Slovakian levelling points were MSL heights directly determined by precise levelling method. The reason for inclusion of Austrian levelling points with their MSL heights in Slovakian Baltic vertical reference frame Bpv determined by using Slovakian quasi-geoid model in the computation of the MSL height differences $\Delta H_{EVRF2007-Bpv}$ was to preserve as much levelling points on which were determined the MSL height differences $\Delta H_{EVRF2007-Bpv}$, as possible, because they served as input data for the determination of the MSL height differences $\Delta H_{EVRF2007-Bpv}$ by Kriging's interpolation method on individual 315 points located in the middle of border river Morava. For the determination of normal (Molodensky's) MSL heights in the vertical reference frame EVRF2007 was utilized Slovakian quasi-geoid model DMQSK2014-E, version 06.2014. Its height (undulation) accuracy is on the level of 2.3 cm (mean value of residuals 1σ on tested points was 2.3 cm (see https://www.geoportal.sk/sk/geodeticke-zaklady/geodeticke-systemytransformacie/). Its geographical extent is illustrated in the Fig. 10.

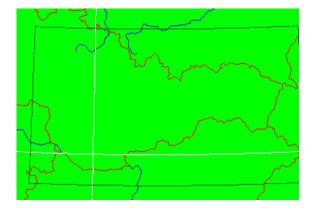


Fig. 10. Geographical extent (bordered by black rectangle) of Slovakian quasi-geoid model DMQSK2014-E, ver. 06.2014 for the computation of normal MSL heights in the vertical reference frame EVRF2007.

This quasi-geoid covers whole territory of Slovakia with overlapping to neighbouring states (see black rectangle in the Fig. 10) and is bordered by latitudes between N47°30′29.98000" and N49°59′29.98400" and by longitudes between E16°30′44.98802" and E22°59′15.01198".

MSL vertical differences $\Delta H_{EVRF2007-Bpv}$ in the Tab. 9 (4th and 8th column) represent input data for the determination of these differences ($\Delta H_{EVRF2007-Bpv}$) on 315 individual points (each other 250 m away) by Kriging's interpolation method and located in the middle of the border river Morava. They graphical presentation can be seen in the Fig. 11.

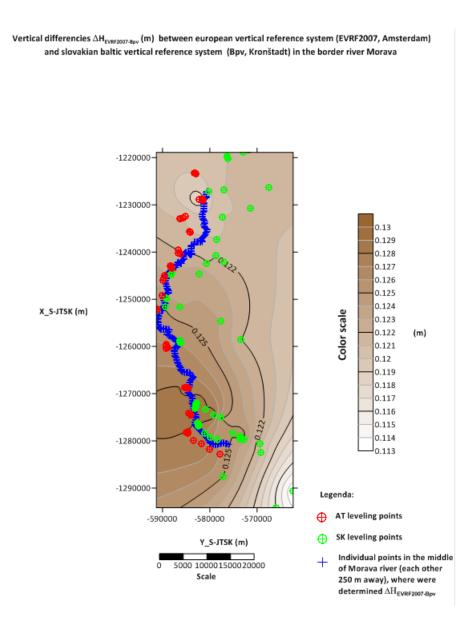


Fig. 11. Vertical differences $\Delta H_{EVRF2007-Bpv}$ (m) between European vertical reference frame (EVRF2007, Amsterdam) and Slovakian Baltic reference frame (Bpv, Kronštadt) on the border river Morava.

Austr	ian levellin			Slovakian levelling points – 57 points			
Point	HEVRF200		ΔHevrf2007	Point ID	HEVRF200		$\Delta H_{EVRF2007}$
ID	$_{7}(m)$	(\mathbf{m})	$-B_{pv}(\mathbf{m})$		$\frac{1127 \text{ m}^2 200}{7 \text{ (m)}}$	(\mathbf{m})	$-B_{pv}(\mathbf{m})$
	197.031	196.90	0.128	3441MA-	/ ()	154.56	0.120
38840C	177.051	3	0.120	53	154.687	7	0.120
38840	223.888	223.76	0.128	3443MA-	10 11007	148.69	0.125
D	220.000	0	01120	42	148.819	4	01120
2	285.366	285.23	0.128	4422BA-	1101017	256.72	0.129
38840E	2001000	8	01220	1002	256.850	1	001112
	161.186	161.05	0.127	AZR-529	134.463	134.34	0.121
38849	1011100	9			10	2	
	148.106	147.97	0.128	C59-509		173.25	
38856	1.01100	8	01220		173.380	9	0.121
	140.838	140.71	0.127	CZA-501		141.52	
38867		1			141.648	3	0.125
38868	141.280	141.15	0.126	CZA-503		152.76	
D		4			152.885	1	0.124
	144.271	144.14	0.128	CZA-505		159.67	
41074		3			159.801	7	0.124
	141.004	140.87	0.128	CZA-506		162.81	
41075		6			162.938	3	0.125
	144.169	144.04	0.127	CZA-508		166.28	
41075B		2			166.408	3	0.125
	143.296	143.16	0.129	CZA-509		176.05	
41076		7			176.178	2	0.126
	147.968	147.84	0.128	CZA-520		188.62	
41095C		0			188.754	9	0.125
	149.938	149.81	0.128	CZA-544		217.80	
41096		0			217.933	8	0.125
41096	149.712	149.58	0.127	CZA-644		155.88	
А		5			156.004	2	0.122
	145.499	145.37	0.127	CZA-		151.34	
41097		2		662.01	151.467	6	0.121
41097	143.832	143.70	0.127	CZA-673		152.19	
А		5			152.318	7	0.121
	140.812	140.68	0.127	ZA1-505		140.72	
41098		5			140.848	2	0.126
	139.805	139.67	0.127	ZA1-510		143.13	
41099		8			143.264	8	0.126
	150.211	150.08	0.128	ZA1-516		152.52	
41102		3			152.649	2	0.127
41103	150.202	150.07	0.127	ZA1-521	147.216	147.08	0.128

Tab. 9 Vertical MSL differences $\Delta H_{EVRF2007-Bpv}$ on Austrian and Slovakian levelling points.

		5				8	
41138	144.266	144.14	0.126	ZA1-522		157.81	
А		0			157.940	2	0.128
	142.873	142.74	0.126	ZA1-525		152.71	
41138B		7			152.847	9	0.128
	143.249	143.12	0.126	ZA1-526		149.44	
41138C		3			149.569	1	0.128
41138	141.448	141.32	0.126	ZA1-537		142.24	
D		2			142.377	8	0.129
41184	144.399	144.27	0.125	ZA1-539		145.56	
А		4			145.691	2	0.129
	143.647	143.52	0.125	ZA2-500		149.71	
41184B		2			149.846	8	0.128
	143.907	143.78	0.125	ZA2-501		150.97	
41184C		2			151.105	7	0.128
41184	144.492	144.36	0.125	ZA2-502		151.91	
D		7			152.042	3	0.129
	140.685	140.56	0.125	ZA2-503		143.44	
41184E		0			143.576	7	0.129
11201	149.434	149.31	0.124	ZA5-505	1 < 1 1 2 2	163.99	0.400
41201	1 40 = 10	0	0.404		164.122	4	0.128
41202	148.710	148.58	0.124	ZA10-517	145 451	145.33	0.10
41202	150 220	6	0.104	7410 510	145.461	5	0.126
41202	150.328	150.20	0.124	ZA10-518	144 740	144.62	0.126
41203	172 277	4	0.124	7 10 520	144.748	2	0.126
41209	173.377	173.25	0.124	ZA10-520	145 210	145.08	0.126
A	175 560	3	0.122	7 4 1 9	145.210	4	0.126
41210	175.568	175.44	0.123	ZA18-	115 569	145.44 5	0 122
A 41211	167.200	5 167.07	0.123	511.02 ZA18-513	145.568	145.72	0.123
	107.200	107.07	0.123	ZA10-313	145.851	8	0.123
A	150.019	149.89	0.123	ZA18-	145.051	145.62	0.123
41218	150.017	6	0.123	513.02	145.745	2	0.123
41210	148.815	148.69	0.123	ZA18-530	1-5.7-5	146.41	0.125
41219	110.015	2		21110 330	146.536	2	0.124
41220	148.977	148.85	0.123	ZA18-532	110.000	145.31	
A	10.777	4	0.120	2.110 002	145.440	6	0.124
41221	145.713	145.59	0.123	ZA18-537		143.96	
A		0			144.091	6	0.125
41232	152.599	152.47	0.122	ZA19-509		146.38	-
Α		7			146.505	1	0.124
	150.345	150.22	0.122	ZA21-507		150.09	
41233		3			150.215	1	0.124
41236	158.006	157.88	0.122	ZA23-505	152.987	152.86	0.122

		4				5	
	154.565	4	0.121	ZA23-511		151.10	
41253	154.505	4	0.121	ZA25-511	151.228	6	0.122
41233	152.883	4	0.121	ZAZB-520	131.220	150.24	0.122
41256	132.005	132.70	0.121	ZAZD-320	150.363	4	0.119
41230	161.607	161.48	0.121	ZBZC-509	130.303	4	0.119
11760	101.007		0.121	ZDZC-309	152 171		0.121
41268	157.207	6 157.08	0.121	ZBZC-539	152.171	0 155.02	0.121
41260	157.207		0.121	ZBZC-339	155 144		0 1 2 1
41269	152 100	6	0 101	7070 540	155.144	3	0.121
41070	153.198	153.07	0.121	ZBZC-540	154 700	154.66	0 101
41270	155.000	7	0.101		154.788	7	0.121
41271	155.323	155.20	0.121	ZBZC-541	154000	154.68	0.4.94
A		2			154.803	2	0.121
41285	152.886	152.76	0.118	ZBZC-544		154.14	
А		8			154.266	5	0.121
	153.104	152.98	0.119	ZC7-513		161.65	
41285B		5			161.772	0	0.122
	150.659	150.54	0.119	ZNSBA2-		134.44	
41285C		0		507	134.568	3	0.125
41285	150.786	150.66	0.119	ZNSBA11		135.43	
D		7		-502	135.559	8	0.121
	151.402	151.28	0.119	4424BA-		128.68	0.113
41285E		3		1021	128.801	8	
	168.104	167.98	0.120	4424BA-		134.70	0.116
41299		4		1024	134.823	7	
	169.601	169.48	0.120	C8-516	212.311	212.18	0.122
41300		1				9	
	169.972	169.85	0.120	CZA-610	167.299	167.17	0.124
41301		2				5	
	168.127	168.00	0.120	CZC-531	167.288	167.16	0.122
41302		7				6	

Another graphical representation of the MSL vertical differences $\Delta H_{EVRF2007-Bpv}$ by using orthographic projection is illustrated in the Fig. 12.

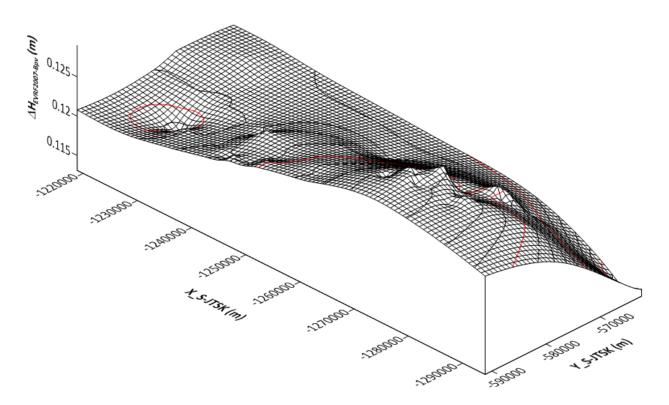


Fig. 12. Vertical differences $\Delta H_{EVRF2007-Bpv}$ (m) between European vertical reference frame (EVRF2007, Amsterdam) and Slovakian Baltic vertical reference frame (Bpv, Kronštadt) on the border river Morava in orthographic projection.

The mean value of the MSL vertical differences $\Delta H_{EVRF2007-Bpv}$ on all Austrian and Slovakian levelling points (together 114 points) is **0.124 m**. The positive values of these MSL vertical differences $\Delta H_{EVRF2007-Bpv}$ mean that the initial point in the European vertical reference frame EVRF2007 (point with normal MSL heights $H_{EVRF2007} = 0$ m in Amsterdam) is lower with respect to the initial point in Slovakian Baltic vertical reference frame Bpv (point with normal height $H_{Bpv} = 0$ m in Kronstadt). In the Tab. 10 are demonstrated the residuals on individual levelling points. The root mean square (RMS) error $\sigma_0 = 3$ mm and mean error of arithmetic average $\sigma = 0.3$ mm of vertical differences $\Delta H_{EVRF2007-Bpv}$ was computed from these residuals.

Tab. 10Residuals of MSL vertical differences $\Delta H_{EVRF2007-Bpv}$ on Austrian and
Slovakian levelling points.

Austria	n levelling points	– 57 points	Slovakian levelling points – 57 points			
Point	ΔH _{EVRF2007-Bpv}	Residuals	Point ID	ΔH _{EVRF2007-Bpv}	Residuals	
ID	(m)	(m)		(m)	(m)	
38840	0.128		3441MA	0.120		
С		-0.004	-53		0.004	
38840	0.128		3443MA	0.125		
D		-0.004	-42		-0.001	
38840	0.128		4422BA-	0.129		
Е		-0.004	1002		-0.005	
	0.127		AZR-	0.121		
38849		-0.003	529		0.003	
38856	0.128	-0.004	C59-509	0.121	0.003	
	0.127		CZA-			
38867		-0.003	501	0.125	-0.001	
38868	0.126		CZA-			
D		-0.002	503	0.124	0.000	
	0.128		CZA-			
41074		-0.004	505	0.124	0.000	
	0.128		CZA-			
41075		-0.004	506	0.125	-0.001	
41075	0.127		CZA-			
В		-0.003	508	0.125	-0.001	
	0.129		CZA-			
41076		-0.005	509	0.126	-0.002	
41095	0.128		CZA-			
С		-0.004	520	0.125	-0.001	
11001	0.128	0.004	CZA-		0.001	
41096	0.105	-0.004	544	0.125	-0.001	
41096	0.127	0.002	CZA-	0.100	0.000	
Α	0.107	-0.003	644	0.122	0.002	
41007	0.127	0.002	CZA-	0.101	0.002	
41097	0.127	-0.003	662.01	0.121	0.003	
41097	0.127	0.002	CZA-	0 121	0.002	
A	0.127	-0.003	673	0.121	0.003	
41098	0.127	-0.003	ZA1-505	0.126	-0.002	
41099	0.127	-0.003	ZA1-510	0.126	-0.002	
41102	0.128	-0.004	ZA1-516	0.127	-0.003	
41103	0.127	-0.003	ZA1-521	0.128	-0.004	
41138	0.126	0.002	ZA1-522	0 1 2 9	0.004	
A	0.126	-0.002	7 4 1 505	0.128	-0.004	
41138 P	0.126	0.002	ZA1-525	0.109	0.004	
B	0.126	-0.002	7 1 5 2 6	0.128	-0.004	
41138 C	0.126	0.002	ZA1-526	0.109	0.004	
С		-0.002		0.128	-0.004	

41138	0.126		ZA1-537		
D	0.120	-0.002	ZA1-337	0.129	-0.005
41184	0.125	-0.002	ZA1-539	0.129	-0.003
	0.125	0.001	ZA1-339	0.120	0.005
A 41184	0.125	-0.001	ZA2-500	0.129	-0.005
	0.125	0.001	ZA2-500	0.129	0.004
B	0.125	-0.001	742 501	0.128	-0.004
41184	0.125	0.001	ZA2-501	0.129	0.004
C	0.125	-0.001	742.502	0.128	-0.004
41184	0.125	0.001	ZA2-502	0.100	0.005
D	0.125	-0.001	742 502	0.129	-0.005
41184	0.125	0.001	ZA2-503	0.100	0.005
E	0.104	-0.001	745 505	0.129	-0.005
41201	0.124	0.000	ZA5-505	0.128	-0.004
	0.124	0.000	ZA10-	0.4.0.4	
41202		0.000	517	0.126	-0.002
	0.124		ZA10-		
41203		0.000	518	0.126	-0.002
41209	0.124		ZA10-		
А		0.000	520	0.126	-0.002
41210	0.123		ZA18-		
А		0.001	511.02	0.123	0.001
41211	0.123		ZA18-		
А		0.001	513	0.123	0.001
	0.123		ZA18-		
41218		0.001	513.02	0.123	0.001
	0.123		ZA18-		
41219		0.001	530	0.124	0.000
41220	0.123		ZA18-		
А		0.001	532	0.124	0.000
41221	0.123		ZA18-		
А		0.001	537	0.125	-0.001
41232	0.122		ZA19-		
А		0.002	509	0.124	0.000
	0.122		ZA21-		
41233		0.002	507	0.124	0.000
	0.122		ZA23-		
41236		0.002	505	0.122	0.002
	0.121		ZA23-		
41253		0.003	511	0.122	0.002
	0.121		ZAZB-		
41256		0.003	520	0.119	0.005
	0.121		ZBZC-		
41268		0.003	509	0.121	0.003
41269	0.121	0.003	ZBZC-	0.121	0.003
11207	0.121	0.005		0.121	0.005

			539		
	0.121		ZBZC-		
41270		0.003	540	0.121	0.003
41271	0.121		ZBZC-		
А		0.003	541	0.121	0.003
41285	0.118		ZBZC-		
А		0.006	544	0.121	0.003
41285	0.119		ZC7-513		
В		0.005		0.122	0.002
41285	0.119		ZNSBA2		
С		0.005	-507	0.125	-0.001
41285	0.119		ZNSBA1		
D		0.005	1-502	0.121	0.003
41285	0.119		4424BA-	0.113	
E		0.005	1021		0.011
	0.120		4424BA-	0.116	
41299		0.004	1024		0.008
41300	0.120	0.004	C8-516	0.122	0.002
	0.120		CZA-	0.124	
41301		0.004	610		0.000
41302	0.120	0.004	CZC-531	0.122	0.002

Exact numerical values of the MSL height differences $\Delta H_{EVRF2007-Bpv}$ for all 315 points located in the middle of border river Morava are not illustrated here due to spatial reasons. Their values range in the interval of **0.113 m** – **0.130 m** (their spread is **0.027 m**).

6. Computation of the MSL height differences $\Delta H_{EVRF2007-Adria}$ between European vertical reference frame EVRF2007 and currently valid Austrian Adriatic vertical reference frame Adria (System der Normalorthometrischen Höhen mit Pegel Adria Triest 1875) in the middle of border river Morava

Although the MSL vertical differences $\Delta H_{EVRF2007\text{-}Adria} = H_{EVRF2007} - H_{Adria}$ (further in text also referred to as $\Delta H_{EVRF2007\text{-}Adria}$) between European vertical reference frame EVRF2007 and currently valid Austrian Adriatic vertical reference frame Adria are not so important with respect to the use of the vertical reference frames in Slovakia (the mandatory vertical reference frame in Slovakia is Bpv only), their determination in the border area between Austria and Slovakia is important with respect to the exchange of geodata within different interstate and international projects (like mapping of the river's bed of the river Danube at the border, since the Danube river is a river of European meaning).

At a glance we could estimate the vertical differences $\Delta H_{EVRF2007-Adria}$ in the area of interest (border river Morava between Austria and Slovakia) by taking into account the average values of vertical differences between Austrian Adriatic vertical reference frame Adria and Slovakian Baltic vertical reference frame Bpv $\Delta H_{Adria-Bpv}$ (0.534 m, see page 29), in

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

combination with the average value of vertical differences between European vertical reference frame EVRF2007 and Slovakian Baltic vertical reference frame Bpv $\Delta H_{EVRF2007-Bpv}$ (0.124 m, see page 35). This would result in an average vertical difference $\Delta H_{EVRF2007-Adria}$ between European vertical reference frame EVRF2007 and Austrian Adriatic vertical reference frame Adria on the level of -0.410 m. The negative sign means that initial point of Austrian vertical reference frame Adria in Trieste, Italy is higher than the initial point of European vertical reference frame EVRF2007 located in Amsterdam, The Netherlands.

However, we decided to verify such estimation by real computation of the vertical differences $\Delta H_{EVRF2007-Adria}$ on the 315 individual points located in the middle of the border Morava river by the same manner like described in Chapters 4 and 5 using the same input data set (57 Austrian levelling points and 52 Slovakian levelling points, since 5 earlier mentioned Slovakian levelling points lie on the edge of the area covered by Austrian geoid model and cannot be used for a reliably interpolation).

In short, we utilized the Adriatic normal orthometric MSL heights determined by precise levelling method on the Austrian levelling points. We also determined their normal EVRF2007 MSL heights by using Slovakian quasi-geoid model called DMQSK2014-E, ver. 06.2014 which has sufficient overlapping into Austria at this border area. This quasi-geoid model was also used to determine the normal EVRF MSL heights on Slovakian levelling points and their Adriatic normal orthometric MSL heights were determined by using Austrian geoid model. In the Tab. 11, the vertical differences $\Delta H_{EVRF2007-Adria}$ on all 109 Austrian and Slovakian levelling points are demonstrated. By this way, we got the input data for the determination of vertical differences $\Delta H_{EVRF2007-Adria}$ on the individual 315 points located in the middle of Morava river (they are each other 250 m away) by applying Kriging's interpolation method.

Austi	rian levellin	g points –	- 57 point	Slovakian levelling points – 52 points			
Point	HEVRF200	HAdria	∆H EVRF2007	Point ID	HEVRF200	HAdria	∆H EVRF2007
ID	7 (m)	(m)	-Adria (m)		7 (m)	(m)	-Adria (m)
	197.031	197.46		3441MA-		155.11	
38840C		0	-0.429	53	154.687	5	-0.428
38840	223.888	224.31		3443MA-		149.24	
D		7	-0.429	42	148.819	6	-0.427
	285.366	285.79		4422BA-		257.27	
38840E		2	-0.426	1002	256.850	8	-0.428
	161.186	161.60		AZR-529	134.463	134.69	
38849		4	-0.418			9	-0.236
	148.106	148.51		C59-509		173.81	
38856		9	-0.413		173.380	2	-0.432
	140.838	141.24		CZA-501		141.98	
38867		7	-0.409		141.648	3	-0.335
38868	141.280	141.68		CZA-503		153.23	
D		8	-0.408		152.885	5	-0.350
41074	144.271	144.70	-0.433	CZA-505	159.801	160.15	-0.358

Tab. 11Vertical differences $\Delta H_{EVRF2007-Adria}$ on Austrian and Slovakian levelling points.

		4				9	
	141.004	141.43		CZA-506		163.29	
41075	111001	7	-0.433	CLITEGO	162.938	7	-0.359
	144.169	144.60		CZA-508		166.76	
41075B		3	-0.434		166.408	5	-0.357
	143.296	143.73		CZA-509		176.53	
41076		0	-0.434		176.178	7	-0.359
	147.968	148.39		CZA-520		189.14	
41095C		0	-0.422		188.754	6	-0.392
	149.938	150.35		CZA-544		218.34	
41096		8	-0.420		217.933	7	-0.414
41096	149.712	150.13		CZA-644		156.39	
А		3	-0.421		156.004	9	-0.395
	145.499	145.92		CZA-		151.85	
41097		0	-0.421	662.01	151.467	8	-0.391
41097	143.832	144.25		CZA-673		152.70	
A		3	-0.421		152.318	7	-0.389
	140.812	141.23		ZA1-505		141.26	
41098		2	-0.420		140.848	0	-0.412
	139.805	140.22		ZA1-510		143.67	
41099	170 011	4	-0.419		143.264	8	-0.414
41100	150.211	150.63	0.410	ZA1-516	150 (10	153.06	0.415
41102	150 202	0	-0.419	74.1.501	152.649	6	-0.417
41102	150.202	150.62	0.420	ZA1-521	147.016	147.63	0.422
41103	144.200	$\frac{2}{14469}$	-0.420	7 1 5 2 2	147.216	8	-0.422
41138	144.266	144.68	0 422	ZA1-522	157.940	158.36	0 422
A	142.873	8	-0.422	7 \ 1 5 25	157.940	2	-0.422
41138B	142.873	143.29	-0.421	ZA1-525	152.847	153.27 0	-0.423
41130D	143.249	4 143.67	-0.421	ZA1-526	132.047	149.99	-0.423
41138C	143.249	2	-0.423	ZA1-320	149.569	4	-0.425
41138	141.448	141.87	-0.423	ZA1-537	147.507	142.80	-0.425
D	141.440	0	-0.422	281-337	142.377	142.00	-0.424
41184	144.399	144.82	-0.422	ZA1-539	1-12.377	146.11	-0.424
A	111.377	4	-0.425	2111 557	145.691	4	-0.423
	143.647	144.07		ZA2-500	101071	150.26	
41184B		2	-0.425		149.846	8	-0.422
	143.907	144.33		ZA2-501		151.52	
41184C		3	-0.426		151.105	5	-0.420
41184	144.492	144.91		ZA2-502		152.45	
D		8	-0.426		152.042	9	-0.417
	140.685	141.11		ZA2-503		143.99	
41184E		1	-0.426		143.576	1	-0.415
41201	149.434	149.85	-0.422	ZA5-505	164.122	164.55	-0.428

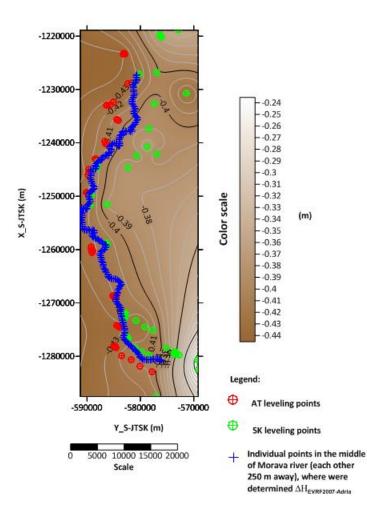
		6				0	
	148.710	149.13		ZA10-517		145.87	
41202	1.007.10	0	-0.420		145.461	7	-0.416
	150.328	150.74		ZA10-518		145.16	
41203		8	-0.420		144.748	4	-0.416
41209	173.377	173.80		ZA10-520		145.62	
А		5	-0.428		145.210	6	-0.416
41210	175.568	175.99		ZA18-		145.98	
А		4	-0.426	511.02	145.568	1	-0.413
41211	167.200	167.62		ZA18-513		146.26	
А		6	-0.426		145.851	2	-0.411
	150.019	150.43		ZA18-		146.15	
41218		7	-0.418	513.02	145.745	8	-0.413
	148.815	149.22		ZA18-530		146.95	
41219		9	-0.414		146.536	5	-0.419
41220	148.977	149.39		ZA18-532		145.86	
А		3	-0.416		145.440	0	-0.420
41221	145.713	146.12		ZA18-537		144.51	
A		8	-0.415		144.091	3	-0.422
41232	152.599	153.01		ZA19-509		146.89	
A		4	-0.415		146.505	3	-0.388
	150.345	150.75		ZA21-507		150.59	
41233	1.50.004	5	-0.410	T + 22 T = 5	150.215	4	-0.379
41006	158.006	158.41	0.412	ZA23-505	150.007	153.35	0.250
41236	154565	9	-0.413	74.02.511	152.987	7	-0.370
41052	154.565	154.97	0.407	ZA23-511	151 000	151.62	0 200
41253	150.002	1	-0.406	7470 500	151.228	6	-0.398
41256	152.883	153.28	0 405	ZAZB-520	150 262	150.79	0 427
41256	161.607	8 162.03	-0.405	ZBZC-509	150.363	0 152.57	-0.427
41268	101.007		-0.426	ZDZC-309	152.171	132.37	-0.401
41200	157.207	3 157.63	-0.420	ZBZC-539	132.171	155.51	-0.401
41269	137.207	4	-0.427	ZDZC-339	155.144	2	-0.368
+1207	153.198	153.62	-v .4 4/	ZBZC-540	155.144	155.15	-0.300
41270	155.170	2	-0.424		154.788	3	-0.365
41270	155.323	155.75	V•747	ZBZC-541	151.700	155.16	0.000
A	155.525	4	-0.431		154.803	8	-0.365
41285	152.886	153.31		ZBZC-544	10 11000	154.63	
A	102.000	8	-0.432		154.266	0	-0.364
	153.104	153.53		ZC7-513		162.12	
41285B		2	-0.428		161.772	4	-0.352
	150.659	151.08		ZNSBA2-		134.98	
41285C		6	-0.427	507	134.568	4	-0.416
41285	150.786	151.21	-0.427	ZNSBA11	135.559	135.79	-0.237

D		3		-502		6	
	151.402	151.82		4424BA-	Not used	Not	Not used
41285E		9	-0.427	1021*		used	
	168.104	168.54		4424BA-	Not used	Not	Not used
41299		3	-0.439	1024^{*}		used	
	169.601	170.04		C8-516 [*]	Not used	Not	Not used
41300		0	-0.439			used	
	169.972	170.41		CZA-610*	Not used	Not	Not used
41301		2	-0.440			used	
	168.127	168.56		CZC-531*	Not used	Not	Not used
41302		8	-0.441			used	

The average value of vertical differences $\Delta H_{EVRF2007-Adria}$ on all Austrian and Slovakian points (together 109 points) is **-0.410 m**. The negative values of vertical differences $\Delta H_{EVRF2007-Adria}$ mean that the initial point in the European vertical reference frame EVRF2007 (point with normal MSL heights $H_{EVRF2007} = 0$ m in Amsterdam, The Netherlands) is higher with respect to the initial point in Austrian Adriatic vertical reference frame Adria (point with normal orthometric height $H_{Adria} = 0$ m in Trieste, Italy).

The residuals on all levelling points are presented in the Tab. 12. From these values were computed the root mean square error (RMS) $\sigma_0 = 32$ mm and mean error of arithmetic average $\sigma = 2$ mm of vertical differences $\Delta H_{EVRF2007-Adria}$.

Austrain	n levelling points –	57 points	Slovakian	levelling points – :	52 points
Point	$\Delta H_{EVRF2007-Adria}$	Residuals	Point ID	$\Delta H_{EVRF2007-Adria}$	Residuals
ID	(m)	(m)		(m)	(m)
38840			3441MA-		
С	-0.429	0.019	53	-0.428	0.018
38840			3443MA-		
D	-0.429	0.019	42	-0.427	0.017
38840			4422BA-		
E	-0.426	0.016	1002	-0.428	0.018
38849	-0.418	0.008	AZR-529	-0.236	-0.174
38856	-0.413	0.003	C59-509	-0.432	0.022
38867	-0.409	-0.001	CZA-501	-0.335	-0.075
38868			CZA-503		
D	-0.408	-0.002		-0.350	-0.060
41074	-0.433	0.023	CZA-505	-0.358	-0.052
41075	-0.433	0.023	CZA-506	-0.359	-0.051
41075			CZA-508		
В	-0.434	0.024		-0.357	-0.053
41076	-0.434	0.024	CZA-509	-0.359	-0.051


Tab. 12Residuals of vertical differences $\Delta H_{EVRF2007-Adria}$ on Austrian and Slovakian
levelling points.

41095			CZA-520		
C	-0.422	0.012	CLIN 520	-0.392	-0.018
41096	-0.420	0.012	CZA-544	-0.414	0.004
41096		0.010	CZA-644	0.414	0.001
A	-0.421	0.011	CLITOTT	-0.395	-0.015
		0.011	CZA-	01070	0.010
41097	-0.421	0.011	662.01	-0.391	-0.019
41097			CZA-673		
A	-0.421	0.011		-0.389	-0.021
41098	-0.420	0.010	ZA1-505	-0.412	0.002
41099	-0.419	0.009	ZA1-510	-0.414	0.004
41102	-0.419	0.009	ZA1-516	-0.417	0.007
41103	-0.420	0.010	ZA1-521	-0.422	0.012
41138			ZA1-522		
А	-0.422	0.012		-0.422	0.012
41138			ZA1-525		
В	-0.421	0.011		-0.423	0.013
41138			ZA1-526		
С	-0.423	0.013		-0.425	0.015
41138			ZA1-537		
D	-0.422	0.012		-0.424	0.014
41184			ZA1-539		
А	-0.425	0.015		-0.423	0.013
41184			ZA2-500		
В	-0.425	0.015		-0.422	0.012
41184			ZA2-501		
С	-0.426	0.016		-0.420	0.010
41184	0.407	0.01.6	ZA2-502	0.44	0.007
D	-0.426	0.016		-0.417	0.007
41184	0.407	0.016	ZA2-503	0.41 -	0.005
E	-0.426	0.016	77.4.5.505	-0.415	0.005
41201	-0.422	0.012	ZA5-505	-0.428	0.018
41202	0 420	0.010	ZA10-	0.417	0.000
41202	-0.420	0.010	517	-0.416	0.006
41202	0.490	0.010	ZA10-	A 116	0.006
41203	-0.420	0.010	518	-0.416	0.006
41209 A	-0.428	0.018	ZA10- 520	-0.416	0.006
A 41210	-0.420	0.010	ZA18-	-0.410	0.000
41210 A	-0.426	0.016	511.02	-0.413	0.003
A 41211	-0.420	0.010	ZA18-	-0.413	0.003
41211 A	-0.426	0.016	513	-0.411	0.001
	- V• 74V	0.010	ZA18-	-0.711	0.001
41218	-0.418	0.008	513.02	-0.413	0.003
+1210	-0.410	0.000	515.02	-0.413	0.003

			ZA18-		
41219	-0.414	0.004	530	-0.419	0.009
41220	-0,-11	0.004	ZA18-	-0,417	0.007
A	-0.416	0.006	532	-0.420	0.010
41221	-0.410	0.000	ZA18-	-0.420	0.010
41221 A	-0.415	0.005	537	-0.422	0.012
41232	-0.415	0.005	ZA19-	-0.422	0.012
A	-0.415	0.005	509	-0.388	-0.022
Λ	-0.413	0.005	ZA21-	-0.500	-0.022
41233	-0.410	0.000	507	-0.379	-0.031
41233	-0.410	0.000	ZA23-	-0.373	-0.031
41236	-0.413	0.003	505	-0.370	-0.040
41230	-0.413	0.005	ZA23-	-0.570	-0.040
41253	-0.406	-0.004	511	-0.398	-0.012
+1233	-0.700	-0.004	ZAZB-	-0.570	-0.012
41256	-0.405	-0.005	520	-0.427	0.017
41230	-0.405	-0.005	ZBZC-	-0.427	0.017
41268	-0.426	0.016	509	-0.401	-0.009
41208	-0.420	0.010	ZBZC-	-0.401	-0.009
41269	-0.427	0.017	539	-0.368	-0.042
41209	-0.427	0.017	ZBZC-	-0.500	-0.042
41270	-0.424	0.014	540	-0.365	-0.045
41270	-02-4	0.014	ZBZC-	-0.505	-0.0+3
A	-0.431	0.021	541	-0.365	-0.045
41285	-0.431	0.021	ZBZC-	-0.505	-0.0+3
A	-0.432	0.022	544	-0.364	-0.046
41285	-0.432	0.022	ZC7-513	-0.504	0.040
B	-0.428	0.018	LC7-515	-0.352	-0.058
41285	-0.420	0.010	ZNSBA2-	-0.552	0.050
C	-0.427	0.017	507	-0.416	0.006
41285		0.017	ZNSBA1		0.000
D	-0.427	0.017	1-502	-0.237	-0.173
41285		0.017	4424BA-	Not used	Not used
E	-0.427	0.017	1021*	1101 4504	1101 4504
		0.017	4424BA-	Not used	Not used
41299	-0.439	0.029	1024*	1101 4504	1101 4504
41300	-0.439	0.029	C8-516 [*]	Not used	Not used
11000	0.107	0.027	CZA-	Not used	Not used
41301	-0.440	0.030	610 [*]	1101 4504	1101 4504
41302	-0.441	0.030	CZC-531*	Not used	Not used
11302	VITL	0.051		1101 4504	1101 4504

Graphical shape of vertical differences $\Delta H_{EVRF2007-Adria}$ for all individual 315 points located in the middle of Morava river is illustrated in the Fig. 13.

Exact numerical values of vertical differences $\Delta H_{EVRF2007\text{-}Adria}$ for all 315 points are not illustrated here due to spatial reasons. Their values range in the interval of **0.391 m** to **0.429 m** (their spread is **0.038 m**).

Vertical differencies $\Delta H_{EVRF2007-Adria}$ (m) in the border river Morava

Fig. 13. Vertical differences $\Delta H_{EVRF2007\text{-}Adria}$ (m) between European vertical reference frame (EVRF2007, Amsterdam) and Austrian Adriatic reference frame (Adria, Trieste) on the border river Morava.

Another graphical representation of the MSL vertical differences $\Delta H_{EVRF2007-Bpv}$ by using orthographic projection is demonstrated in the Fig. 14.

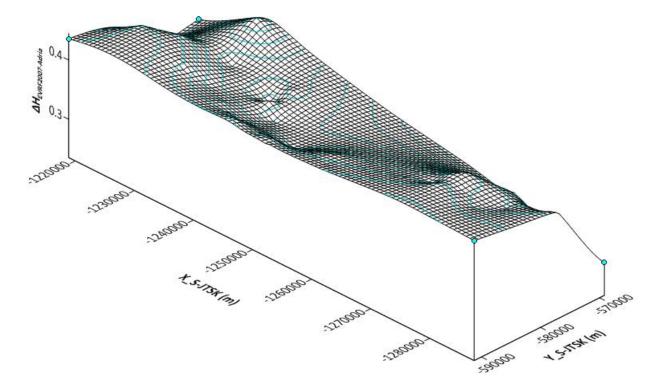


Fig. 14. Vertical differences $\Delta H_{EVRF2007-Adria}$ (m) European vertical reference frame (EVRF2007, Amsterdam) and Austrian Adriatic vertical reference frame (Adria, Trieste) on the border river Morava in orthographic projection.

7. CONCLUSION

The determination of optimal MSL vertical differences between two currently valid vertical reference frames requires to have available a sufficient data set of levelling points with their currently valid respective MSL values. In the case, when such set of levelling points is not available, it is necessary to realize observations for their determination in the area of interest. In addition, fur such kind of computations it is necessary to have available as precise relevant (quasi)geoid models as possible, which would cover the whole area of interest.

Statistical evaluation of achieved results presented in this article is summarized in the Tab. 13. The assessing parameters reflect uncertainties in the precise levelling method and in the heterogeneity of used levelling points (for example, Slovakian set of levelling points is a mix of levelling points of 1st and 2nd order), as well as uncertainties in the determination of Austrian geoid and Slovakian quasi-geoid.

Statistical parameters of assessment	Vertical MSL differences ΔH (m) between			
of achieved results	individual vertical reference frames Bpv, Adria			
	and EVRF2007 in the area of border river			
	Morava			
	$\Delta H_{Adria-Bpv}$	∠ <i>H</i> EVRF2007-Bpv	$\Delta H_{EVRF2007}$ -	
			Adria	
Average value	0.534	0.124	- 0.410	
Root mean square (RMS) error σ_0	0.033	0.003	0.032	
Mean error of arithmetic average σ	0.003	0.0003	0.002	

Tab. 13Statistical evaluation of achieved results in the area of interest (border river
Morava with total length of about 78.5 km).

The estimated accuracy of the computation of the vertical MSL differences $\Delta H_{Adria-Bpv}$ between Austrian Adriatic vertical reference frame (System der Normalorthometrischen Höhen mit Pegel Adria Triest 1875) and Slovakian Baltic vertical reference frame Bpv (Kronstadt) by using both respective models of Austrian geoid and Slovakian quasi-geoid is on the level of technical levelling. The same can be said for the determination of vertical MSL differences $\Delta H_{EVRF2007-Bpv}$ between European vertical reference frame EVRF2007 (Amsterdam) and Slovakian Baltic vertical reference frame Bpv (Kronstadt). Their mean value in the area of interest (border river Morava) is 0.124 m (see Tab. 8). The value is in very good accord with the estimated value of 0.120 m for the territory of Slovakia declared by (*Sacher, Ihde, Seeger, 1998*).

The mean value of the determined MSL vertical differences $\Delta H_{EVRF2007\text{-}Adria}$ between European vertical reference frame EVRF2007 (Amsterdam) and Austrian Adriatic reference frame Adria is -0.410 m (see Tab. 12). It differs from the value of -0.350 cm declared in (*Sacher, Ihde, Seeger, 1998*) for the whole Austrian territory by 6 cm.

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

Another alternative would be the realisation of precise levelling observations on identical levelling points on the Austrian side of Morava and Danube river with the initial point on Slovakian levelling point of the 1st order with currently valid MSL height in the Slovakian Bpv vertical reference frame. This would result in the determination of MSL normal heights on the selected set of Austrian levelling points and vice versa. It means, the initial point for such precise levelling observations would be a point on the Austrian side with currently valid Adriatic MSL height. By this, there would be determined precise Adriatic MSL normal orthometric heights on the selected set of Slovakian levelling points. The same procedure would also be applied for the determination of MSL heights in the European vertical reference frame EVRF2007.

This would assign that all MSL vertical differences on the chosen set of levelling points on both sides would be computed from directly observed data (not from geoid and quasigeoid models) and this data would serve as an input values for the determination of all MSL vertical differences in the area of interest by using the Kriging's interpolation method for any point of interest in all three vertical reference frames (Bpv, EVRF2007 and Adria). Using this way of the determination of the vertical MSL differences on the chosen set of levelling points would guarantee the highest possible level of accuracy on the millimetre level. However, its main and big disadvantage is its time and financial demand.

Despite it, it is necessary to consider that the availability of high quality vertical MSL differences are imperative pre-requisites for reliable determination of impact of the variation of water masses on the surrounding area and its infrastructure. Therefore, it would be suitable and highly beneficial to verify the achieved results by direct observations in the field. Their additional and very important advantage would be essential simplification and facilitation of geodata interchange and elimination (or at least great reduction) of possible sources of errors, which mostly emerge because of the interchange of very heterogeneously data within different interstate and international projects.

Any improvement of precise levelling and gravimetric observations bring refinement in the complex realisation of a vertical reference frame (see also Liebsch, Rülke, Sacher, Ihde, 2014) and leads to the improvement of the determination of the MSL vertical differences between different vertical reference frames. This also heads to the more precise assessment of earth's surface dynamics.

In 2015, a group of authors (*Ihde, et al, 2015*) stated that during next four years will be established a commission within IAG, which will examine the possibility of replacement of currently valid Global Reference System 1980 (GRS80) by a new Geodetical Reference System (GRS). This working group prepared a proposal of total new parameters for the new GRS and this proposal was presented on the IUGG plenary session in Montreal, Canada in the time of July 8 – July 18, 2019.

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

ACKNOWLEDGEMENT

The authors of this article are grateful to Slovakian Geodetical and Cartographical Institute, Bratislava and Austrian Federal Office for Calibration and Surveying, Vienna for the provision of the most current geodata about levelling points along Austrian – Slovakian border in the area of interest (border rivers Morava and Danube).

LITERATURE

BENEŠ, F.: Současný stav výškových geodetických základů. Geodetický a kartografický obzor, ročník 45/87, 1999, číslo 6, str. 113 – 117. (in czech)

BÖHM, J., HORA, L., KOLENATÝ, E.: Vyšší geodézie, díl 2, Ediční středisko ČVUT, Praha 1, 1981. (in czech)

DREWES, H.: Reference Systems, Reference Frames, and Geodetic Datum – Basic Considerations. In: Observing our Changing Earth. IAG Symposia 133, Springer – Verlag Berlin, Heidelberg 2009.

IHDE, J., AUGATH, W.: The Vertical Reference System for Europe. In: Veröff. Bayer Komm. Int.Erdmess. Bayer Akad. d. Wiss., Astron-geod. Arb., München 2000, H. 61, p. 99 – 110.

IHDE, J., MÄKINEN, J., SACHER, M.: Conventions for the Definition and Realization of a European Vertical Reference System (EVRS). IAG SC 1.3 a EUREF, 2008.

JEKELI Ch.: Geometric Reference Systems in Geodesy. Division of geodesy and Geospatial Science, School of Earth Sciences, Ohio State University, July 2006.

KRUIS, B.: Srovnávací studium nivelačních horizontů ČSR a okolních států. Geodetický a kartografický sborník, 1957. (in czech)

LIEBSCH, G., RÜLKE, A., SACHER, M., IHDE, J.: Definition and Realization of the EVRS: How do we want to proceed? Presented at EUREF Symposium 2014, June 04-06, Vilnius, Lithuania.

LOWRIE, W.: Fundamentals of Geophysics, 2nd edition., Cambridge: Cambridge University Press, 381 pp., 2007)

MILIČKA, J.: Uhľovodíkový potenciál Podunajskej panvy. Univerzita Komenského, Prírodovedecká fakulta, 2017. (in slovak)

MOJZEŠ, M., KALAFUT, M.: Technická správa – Diferencie medzi Jadranským vertikálnym referenčným systémom realizovaným ČSJNS (Československá jednotná nivelačná sieť) – Jadrančsjns a Baltským vertikálnym referenčným systémom realizovaným vertikálnou referenčnou sieť ou Bpv (Balt po vyrovnaní). Bratislava, Máj 2018. (in slovak)

Vertical Reference Frames in Slovakia and their Reciprocal Differences (10507) Marcel Mojzes and Martin Kalafut (Slovakia)

PICK, M.: Výšky, nivelace, hladinové a vztažné plochy. Zborník referátov "Súčasný stav a perspektívy rozvoja geodézie a využívanie výsledkov vedy a výskumu v geodetickej praxi". Bardejovské Kúpele, 3.9.1987. (in czech)

SACHER, M., LIEBSCH, G.: Short description of the European vertical reference system and its realizations. EUREF Symposium 2015, June 03-05, Leipzig, Germany.

SACHER, M., IHDE, J., SEEGER, H.: Preliminary Transformation Relations between National European Height Systems and UELN. Oslo, CERCO – Plenary 1998. 19s.

SAV – mapa úplných Bouguerových gravitačných anomálií. (in slovak)

VYKUTIL, J.: Vyšší geodézie, Díl II. Ediční středisko VUT Brno, 1978. (in czech) VYKUTIL, J.: Výpočet tíhových korekcí nivelace v baltském výškovém systému. Geodetický a kartografický obzor. Sv. 5/47 (1959) č. 8. (in czech)