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SUMMARY 

Dealing with the conflicts among urban expansion, cropland protection, and conservation of 

ecosystem services becomes the subject of increased attention in the sustainable land use 

planning. Previous studies explored the optimized land allocation to mitigate the trade-offs 

between urbanization and protection of cropland quantity, or between urbanization and 

protection of ecosystem services, but few studies explored the optimized land use allocation 

which could achieve the synergy among urban expansion, cropland protection (not only 

protecting its quantity but quality), and conservation of ecosystem services. Taking Hubei of 

China as the study area, this study aims to optimize land use allocation which can meet the 

demand for both urban land and cropland in quantity, while maximizing the productivity of 

cropland and minimizing the loss of ecosystem service value (ESV) during 2010‒2030. Based 

on potential agricultural yield estimated by Global Agro-ecological zone (GAEZ) model and 

the spatial differences of ESV assessed by unit value-based approach, we optimized the land 

use allocation by applying the LAND System Cellular Automata model for Potential Effect 

(LANDSCAPE). Specifically, the spatial difference of potential agricultural yield was 

expressed as parameter of suitability, while the spatial difference of ESV was represented by 

the parameter of resistance. Results show that, the optimized land use allocation will meet the 

demand for both urban land and cropland in quantity, meanwhile, the potential agricultural yield 

will increase by 361 kg/km2 (which can make cropland economic value increase 12.71×106 

US$ to 13.37×106 US$), and the loss of ESV will decrease by 46.57 million US$. The results 

indicated that it is feasible to allocate land resources to achieve the synergy among urban 

development, protection of cropland in quantity and quality, and conservation of ecosystem 

services. This study highlights the importance to take the spatial difference of both potential 

agricultural yield and ESV into consideration in land use planning. 
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1. Introduction 

Urban land is the basis of economic development, and it supports more than half of the global 

population. The global urbanization rate is expected to rise from 50% in 2009 to 69% in 2050, 

and more than 1.86 billion people will live in urban lands (United Nations, 2015). In this case, 

global urban land dramatically expands with the unprecedented urbanization (Lambin and 

Meyfroidt, 2011; Angel et al., 2005), and it was predicted to increase by 1.2 million km2 during 

2000–2030 (Seto et al., 2012). Meanwhile, China, as the populated country has experienced the 

highest rates of urban land expansion (Seto et al., 2011). Specifically, China had experienced 

extremely rapid urban growth from 1992 to 2012 with an average annual growth rate of 8.74%, 

in contrast with the global average of 3.20% (Jiang et al., 2013). Although the expansion of 

urban land plays an important role in improving urbanization level (Yang et al., 2018), it leads 

to the conversion of a large amount of cropland and ecological landss (e.g., forest, grassland, 

and wetland) into urban land (Deng et al., 2015). Specifically, urban expansion often occurs on 

croplands (Deng et al., 2015), and it was predicted to result in a 1.8–2.4% loss of global 

croplands by 2030 (d’Amour ET AL., 2017). In addition, some studies have assessed the loss 

of ecological lands, including forest, grassland, and wetland (IUCN, 2013), caused by urban 

expansion especially in the key biodiversity hotspots (Seto et al., 2012; Mao et al., 2018; He et 

al., 2011). 

Given that global population will continue to increase and considerable cropland has been 

encroached by urban expansion, the cropland needs to be protected and supplemented to deal 

with the global food security issues. Specifically, the demand for global food was predicted to 

increase 60%–110% by year 2050 in the context of the increasingly global population (Godfray 

et al., 2010). It was predicted that about 2 billion hectares of additional cropland will be required 

to meet the increased demand for food and nutrition (Tillman et al., 2011). Therefore, the 

cropland will be further reclaimed to maintain cropland resource and deal with global food 

security issues, especially in the populated countries and regions (Stoms et al., 2009). China 

has the largest population in the world, and its government implements a series of strict cropland 

protection policies to compensate the lost cropland caused by urban expansion and maintain 

cropland resources (Zhang et al., 2014; Cheng et al., 2015). For example, the policy named 

Requisition–Compensation Balance of Cropland clearly states that the stakeholders occupying 

cropland are responsible for the compensation equivalent to the requisitioned cropland (Liu et 

al., 2014; Liang et al., 2015). The cropland reclamation has effectively alleviated the continuous 

reduction of cropland and maintain the quantity of cropland (Song and Pijanowski, 2014), 

however, the quality of cropland was degraded (Liu et al., 2015b). The main cause is that the 

quality of occupied cropland is often better than that of reclaimed cropland (Lichtenberg and 

Ding, 2008; Liu et al., 2015b).  

To maintain cropland resources, the ecological lands, including forest, grassland, and wetland 

(IUCN, 2013), are inevitably encroached by cropland. van Vliet (2019) suggested that global 
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losses of ecological lands related to forest and shrubland are primarily attributed to cropland 

expansion, whereas the role of urban expansion is considered minor. As for the regional scale, 

Lark et al. (2015) found that cropland expansion caused a great loss of grassland, with 5.7 

million acres lost (accounting for 77% of all new cropland) between 2000 and 2008 in the 

United States. Furthermore, the area of cropland expansion replacing natural habitat was 

predicted to be 3.5×108 hectares in 2050, which would lead to eutrophication and natural habitat 

destruction (Tilman et al., 2001). Meanwhile, cropland expansion is also a noticeable issue in 

China, and therefore, large areas of ecological lands have been converted into cropland in China 

(Ke et al., 2018; Zheng et al., 2018; Ke and Tang, 2019). 

With the currently continued growth of urbanization in China, existing cropland at risk for 

conversion to urban land, and ecological lands at risk for conversion to cropland and urban land 

(Jiang et al., 2012). China are faced excessive urban expansion, considerable loss in both the 

quantity and quality of cropland, and decline of ecosystem services (Jiang et al., 2013; Zheng 

et al., 2019a; Zheng et al., 2019b).  Both urban expansion and cropland protection can threaten 

ecosystem services by occupying ecological lands (Delphin et al., 2016; Shen et al., 2017; Ke 

et al., 2018), especially in the populated countries such as China. Ecosystem services are the 

benefits human beings gained from the ecosystem (Costanza et al., 1997). The ecosystem 

service value (ESV) indicates the economic value of ecosystem services, which is applied to 

guide decision-making processes of land use strategy as a useful tool (Bateman et al., 2013). In 

this case, how to optimize the land use allocation to allocation to balance urban expansion, 

cropland protection, and conservation of ecosystem services has been the subject of increased 

attention (Foley et al., 2005; Scarborough et al., 2012). Therefore, achieving land use 

optimization allocation for sustainable development has become an important issue in land use 

and is a critical task for reasonable allocation of limited land resources while promoting 

sustainability (Cao et al., 2011, 2012). Previous studies explored the optimized land allocation 

to mitigate the trade-offs between urbanization and protection of cropland quantity, between 

urbanization and protection of ecosystem services, and agriculture and ecosystem service 

(Zhang et al., 2016; Zheng et al., 2019b; Kennedy et al., 2016). However, few studies explored 

the optimisation of land use allocation based on the spatial differences of the productivity of 

cropland and ESV for the synergy among urban expansion, cropland protection (not only 

protecting its quantity but quality), and conservation of ecosystem services. 

Taking Hubei province of China as the study area, this study aims to propose a spatial 

optimisation model of land use allocation based on the LAND System Cellular Automata model 

for Potential Effect (LANDSCAPE). This model is capable to realise the synergy among urban 

expansion, cropland protection (not only protecting its quantity but quality), and conservation 

of ecosystem services, based on spatial differences of both the productivity of cropland and 

ESV. Firstly, the spatial differences of potential agricultural yield and ESV were assessed by 

Global Agro-ecological zone (GAEZ) model and unit value-based approach, respectively. Then, 

spatial difference of potential agricultural yield was applied to calculate the parameter of 

suitability for the model, while spatial difference of ESV was used to calculate the parameter 

of resistance for the proposed optimisation model. After that, the optimisation model was used 

to optimise land use allocation, and we estimated the changes in urban expansion, the quantity 

and quality of cropland in Hubei during 2010‒2030 in the optimized land use allocation. Finally, 

we assessed the performance of optimized land use allocation by comparing the optimized land 
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use allocation and the non-optimized land use allocation. 

2. METHODS AND DATA 

2.1 Methods 

2.1.1. LANDSCAPE model for land use simulation 

The LANDSCAPE model, as an improved Cellular Automata (CA) -based model, can be 

employed to simulate cascading processes of land use changes by introducing hierarchical 

allocation strategies (Ke et al., 2017). The allocation of land use types is determined by two 

factors: suitability and resistance (Ke et al., 2018). Suitability represents the quality of the 

location for a target land use type, and resistance represents the difficulty for a cell to convert 

from current land use type to another one (Ke et al., 2018). The combined effect of suitability 

and resistance is calculated according to formula (1):  

𝑇𝑇𝑃𝑙,𝑡𝑢 =
𝑆𝑙,𝑡𝑢

𝑅𝑙,𝑐𝑢
                                                                                                                      (1) 

where 𝑇𝑇𝑃𝑙,𝑡𝑢 represents the total transition possibility of a cell at location 𝑙 for the target land 

use type 𝑡𝑢; 𝑆𝑙,𝑡𝑢 represents the suitability for a cell at location 𝑙 for the target land use type 𝑡𝑢, 

and 𝑅𝑙,𝑐𝑢 represents the resistance of a cell at location 𝑙 to convert from current land use type 

𝑐𝑢 to another land use type (Zheng et al., 2019a).   

Suitability 𝑆𝑙,𝑡𝑢 can be calculated accordingly: 

𝑆𝑙,𝑡𝑢 = (1 + (− 𝑙𝑛 𝛾)𝛼) × 𝑃𝑆𝐶𝑙,𝑡𝑢 × 𝐶𝑜𝑛(𝐶𝑙,𝑡𝑢) × 𝑁𝐿𝑙,𝑡𝑢                                                   (2) 

where 1 + (− 𝑙𝑛 𝛾)𝛼  represents a random factor used to explain the impacts of factors not 

included in the model on the dependent variable, 𝛾 is a stochastic number which varies from 0 

to 1, while 𝛼 is an integer from 0 to 10 used as a dispersion factor to control the random number 

(Zheng et al., 2019a). Additionally, 𝑃𝑆𝐶𝑙,𝑡𝑢  reflects the impacts of location characteristics, 

including physical and social characteristics, such as elevation, slope, soil, and the distance to 

roads, etc. In this research, 𝑃𝑆𝐶𝑙,𝑡𝑢 was calculated by Support Vector Machines (SVM) (Ke et 

al., 2017). 𝐶𝑜𝑛(𝐶𝑙,𝑡𝑢) represents the constraint value of a cell, with a value of 0 or 1. Value 0 

represents the cells that are unchangeable, while value 1 represents the cells that are changeable. 

The 𝐶𝑜𝑛(𝐶𝑙,𝑡𝑢) value of river was set as 0 since the land use maps of Hubei in 2000 and 2010 

showed that the river in both location and area were stable from 2000 to 2010. 𝑁𝐿𝑙,𝑡𝑢 represents 

the impacts of neighboring land use types, which is calculated accordingly: 

𝑁𝐿𝑙,𝑡𝑢 = 𝑛(𝑆𝐶=𝑡𝑢)

𝑇𝑁
                                                                                                                    (3)                                                

where 𝑛(𝑆𝐶 = 𝑡𝑢) represents the number of cells that represent the type of target land use in a 

given neighborhood at location 𝑙, and 𝑇𝑁 represents the total number of cells in the given 

neighborhood.  
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As for the resistance, it can be calculated based on the observed land use maps, and can be 

tested by calculating the difficulty for one land use type being occupied by another type (Zheng 

et al., 2019a). The resistances in this study (Table 1) were calculated by following the method 

used from Ke et al. (2017), and the method also was applied in the studies of Mei et al. (2017), 

Zheng et al. (2019a; 2019b), and Ke et al. (2018; 2019). 

Table 1 

Resistance for each land use type. 

Land-use 

type 

Croplan

d 

Fores

t 

Grasslan

d 

Rive

r 

Wetlan

d 

Urba

n land 

Rural 

constructio

n land 

Unuse

d land 

Resistanc

e 
1.00 1.25 1.25 1.50 1.25 1.50 1.50 1.00 

 

The KSimulation, as the most important index in Kappa Simulation, can be used to represent 

the degree of agreement between the simulated and actual observed land use maps (van Vliet 

et al., 2011). As Table 2 shows, KSimulation values of each land use type were all greater than 

0, which qualified the LANDSCAPE model for further simulations (van Vliet et al., 2011).  

Table 2 

Kappa Simulation values of LANDSCAPE model. 

 Cropland Forest Grassland Wetland Urban 

land 

Rural  

construction 

land 

Unused 

land 

KSimulation 0.333 0.140 0.218 0.270 0.521 0.298 0.296 

2.1.2. Adjusted suitability based on potential agricultural yield 

Potential agricultural yield can represent the quality of cropland (Zheng et al., 2019a). Potential 

agricultural yield is mainly affected by climate, soil, water resource, and irrigation. Global 

Agro-Ecological Zones (GAEZ) model (IIASA/FAO et al., 2012; Liu et al., 2014) was 

employed to calculate potential agricultural yield. Specifically, firstly, based on the climatic 

conditions, the GAEZ model was applied to estimate the climate suitability of crops planted. 

Then, based on step by step restriction, the potential agricultural yield for suitable crops was 

assessed (Zheng et al., 2019a). The parameter of suitability was adjusted by changing 𝑃𝑆𝐶𝑙,𝑡𝑢 

(in formula 2). Based on the spatial differences of potential agricultural yield, the cell with 

higher potential agricultural yield will have the higher possibility to become cropland. 

Specifically, the potential agricultural yield was normalized, and normalized values range from 

1.5 to 2.  

2.1.3. Adjusted resistance based on ESV 

ESV was calculated by using a unit value-based approach, which was used to adjust the 

parameter of resistance in LANDSCAPE model. The unit value-based approach was also 

applied in the study of Xie et al. (2017).  The ESV were used to adjust the parameter of 

resistance in the LANDSCAPE model in order to protect the ecosystem with a higher ESV. 
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Land use types with higher ESV levels can be protected by means of higher resistances. 

Consequently, the resistances for land use types were adjusted by their ESV levels, according 

to the following formula: 

𝑅𝑖_𝑎𝑑
′ = 𝑅𝑖 × [𝑅𝑚𝑖𝑛 +

𝐸𝑆𝑉𝑖−𝐸𝑆𝑉𝑚𝑖𝑛

𝐸𝑆𝑉𝑚𝑎𝑥−𝐸𝑆𝑉𝑚𝑖𝑛
× (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛)]                                                        (4) 

where 𝑅𝑖_𝑎𝑑
′is the adjusted resistance of land use type 𝑖. 𝑅𝑖   is the original resistance of land 

use type 𝑖. 𝐸𝑆𝑉𝑖  is the ESV of land use type 𝑖. 𝐸𝑆𝑉𝑚𝑎𝑥 represents the maximum ESV of all the 

ecological lands, while 𝐸𝑆𝑉𝑚𝑖𝑛 represents the minimum. 𝑅𝑚𝑎𝑥 represents the maximum value 

of resistance adjustment, while  𝑅𝑚𝑖𝑛  represents the minimum value.  𝑅𝑎𝑑𝑗_𝑚𝑎𝑥  and 

𝑅𝑎𝑑𝑗_𝑚𝑖𝑛 were set as 1.5 and 1, respectively. In this study, the ESV per unit for individual land 

use type was adopted from Xie et al. (2017). The parameters  𝑅𝑚𝑎𝑥  and 𝑅𝑚𝑖𝑛  refer to the 

maximum and minimum resistance values, respectively. 

2.2. Datasets 

Six datasets were used in this study: land use data, meteorological data, terrain data, soil data, 

and accessibility data (Ke et al., 2017). 

 (1) Land use dataset was obtained from the National Land Use Database (http://www.resdc.cn). 

The spatial resolution of the land use data is 30 m, and the accuracy of the data is 92.7% (Liu 

et al., 2010). Land use types were reclassified into cropland, forest, grassland, river, wetland, 

urban land, rural construction land, and unused land (Liu et al., 2019; Zhou et al., 2019). (2) 

The meteorological dataset includes data on annual rainfall and average annual accumulated 

temperature which were obtained from the Chinese Meteorological Administration (CMA) 

(http://www.cdc.cma.gov.cn). (3) The terrain dataset includes elevation and slope. The data of 

elevation were obtained from the Shuttle Radar Topography Mission (SRTM). Based on the 

elevation, the slope raster data were generated by the “Slope” tool in ArcMap 10.2. (4) The soil 

dataset was obtained from the China Soil Database (http://www.gis.soil.csdb.cn), including soil 

plough thickness, soil organic matter content, soil phosphorous content, and soil pH value. (5) 

We used seven types of road networks from the Traffic Atlas of Hubei, including national roads, 

provincial roads, main roads, minor roads, highways, railways, and other roads. The “Euclidean 

Distance” tool in ArcMap 10.2 was applied to generate raster data. (6) The dataset of potential 

agricultural yield was obtained from Resource and Environment Data Cloud Platform 

(http://www.resdc.cn/DOI,2017. DOI:10.12078/2017122301). The crops in this dataset mainly 

includes wheat, maize, rice, soybean and sweet potato (accounting for 97.7% of the total 

Chinese grain output) (Jiang et al., 2013). Given that this study focused on the change of 

potential agricultural yield due to land use change, the short duration of the study period (2010–

2030), and many uncertainties of physical and socioeconomic conditions in 2030, it is assumed 

that the potential agricultural yield in individual pixel does not affected by climate, soil, water, 

and irrigation (Zheng at al., 2019a). Therefore, the potential agricultural yield in the individual 

pixel in 2030 was set same as that in 2010 if its land use type maintains same. 
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3. RESULTS 

3.1. Adjusted suitability and resistance for optimized land use allocation 

Potential agricultural yield was used to adjust the parameter of suitability in the LANDSCAPE 

model. Generally, the potential agricultural yield in central regions of Hubei is highest, such as 

Jianghan, Xiaogan, and Wuhan (Fig. 1). Meanwhile, the northern part of Xiangfan also obtains 

high potential agricultural yield. Therefore, the adjusted values in individual pixels in these 

areas are high with about 1.5. In contrast, the potential agricultural yield in the western regions 

is relatively low, and therefore, the adjusted values were almost 1. 

 
Fig. 1. The adjusted suitability and resistance for optimized land use allocation 

 

Resistances in the LANDSCAPE model were adjusted based on the ESV to conserve ecosystem 

services. The individual land use type which has a higher ESV was protected by the greater 

resistance. The ESV in this study was calculated by using the method of Xie et al. (2017) and 

adjusted resistances based on formula 4 (in section 2.2.5). Then the results were shown in Table 

3. The river was represented with a highest ESV value per unit, and followed by wetland, forest, 

grassland, unused land, and built-up area. Base on the original resistances in table 2 (Ke et al., 

2017). The resistance levels of river, urban land, and rural settlements were higher than those 

of other land use types, while cropland showed the lowest resistance and can therefore easily 

be converted into other land use types. In the optimisation scenario, resistance values were 

adjusted based on both ESV and original resistances. River, wetland, forest and grassland 

showed higher resistance values than the original ones, with increased difficulty of being 

converted into other land use types. 

Table 3 

Equivalent value per unit area and adjusted resistance of individual land use type. 
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Land use 

type 

Croplan

d 
Forest 

Grassla

nd 

Wetlan

d 
River 

Urba

n 

land 

Rural 

construction 

land 

Unus

ed 

land 

Equivale

nt value* 
2,956  

10,52

4  
4,367  20,497  

16,97

2  
0 0 520 

Original 

resistanc

e  1.00  1.25  1.25  1.25  1.50  1.50  1.50  1.00  

Adjusted 

resistanc

e  1.07  1.57  1.38  1.88  2.12  1.5  1.5 1.01 

* (US$·ha-1·yr-1) 

3.2. Difference between the optimized land use allocation and non-optimized land use 

allocation 

3.2.1. Differences in land use changes 

The land use changes in Hubei from 2010 to 2030 in the optimized land use allocation and non-

optimized land use allocation are shown in Fig. 4a and Fig. 4b. In the optimized land use 

allocation (Fig. 4a), urban expansion will lead to considerable loss of cropland. The loss of 

cropland caused by urban expansion will be 293 km2, accounting for 83% of the total new urban 

land, followed by wetland (31 km2, 11%) and forest (22 km2, 7%). Comparatively, cropland 

will encroach much ecological land, wherein wetland will lose most (216 km2), accounting for 

74% of the total added cropland. Meanwhile, forest will lose 59 km2, while grassland will lose 

11 km2. In the non-optimized land use allocation (Fig. 4b), the loss of ecological land caused 

by urban expansion much more than that loss in the optimized land use allocation. In detail, the 

loss of wetland and forest caused by urban expansion will be 54 km2 and 41 km2, respectively. 

In addition, cropland will encroach considerable wetland with 225 km2. 

 
Fig. 4 Land use changes in Hubei from 2010 to 2030 in the optimized land use allocation (a) 

and non-optimized land use allocation (b). 

3.2.2. Differences in changes of potential agricultural yield 

The total of potential agricultural production in the optimized land are 24.70×106 kg than that 

production in the non-optimized land use allocation (Table 4). Furthermore, for most of city of 
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Hubei, the potential agricultural production in the optimized land are higher than the production 

in the non-optimized land use allocation. The largest difference of agricultural production 

between the optimized and non-optimized land use allocations will be in Xiangfan, followed 

by Jingzhou and Jianghan. Furthermore, the total area of cropland in 2030 in Hubei will be 

68330 km2, so the potential agricultural yield will increase by 361 kg/km2 (which can make 

cropland economic value increase 12.71×106 US$ to 13.37×106 US$). 

Table 4  

The potential agricultural production of each region in Hubei in 2030 and the corresponding 

economic value 

Regional 

name 

In 

optimized 

land use 

allocation 

(106 kg) 

In non-

optimized 

land use 

allocation 

(106 kg) 

Difference* Economic value**(106 US$) 

(106 kg) 
increase 

by 7.14% 
increase by  

12.77% 

Shiyan 1336.74 1334.77 1.96 1.01  1.06  

Xiangfan 9047.35 9040.25 7.1 3.65  3.85  

Jingmen 6383.4 6380.24 3.16 1.63  1.71  

Xiaogan 8083.53 8082.18 1.35 0.70  0.73  

Huanggang 6408.63 6406.41 2.22 1.15  1.21  

Wuhan 5187.65 5187.61 0.04 0.02  0.02  

Ezhou 678.67 678.64 0.03 0.02  0.02  

Huangshi 1287.77 1287.35 0.43 0.22  0.24  

Xianning 2054.4 2053.49 0.91 0.47  0.50  

Jingzhou 9985.22 9980.03 5.18 2.67  2.81  

Enshi 657.14 657.25 -0.12 -0.06  -0.07  

Yichang 2398.44 2398.54 -0.1 -0.05  -0.06  

Jianghan 5760.35 5757.1 3.25 1.67  1.76  

Suizhou 1705.61 1706.33 -0.72 -0.37  -0.39  

Shennongjia 7.14 7.13 0.01 0.00  0.00  

Total 60982.03 60957.33 24.7 12.71  13.37  

* Difference represents the difference of the potential agricultural production between the 

optimized and non-optimized land use allocations 

** The average price of the main crops in China is 0.48 US$/kg currently, and the price was 

predicted to increase by 7.14% and 12.77% (Chen et al., 2012). 

3.2.3. Differences in changes of ESV 

The loss of ESV in Hubei from 2010 to 2030 was predicted to be 598.41×106 US$ in the 

optimized land use allocation, and to be 644.98×106 US$ in the non-optimized land use 

allocation. Therefore, the loss of ESV in the optimized land use allocation will 46.57×106 

US$ less than that loss in non-optimized land use allocation in total.  

Table 5  

Loss of ESV in Hubei from 2010 to 2030 (106 US$)  
Optimized land use allocation Non-optimized land use allocation 
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To urban land  To cropland To urban land  To cropland 

From cropland 86.61  - 74.44  - 

From forest 22.67  44.70  42.68  18.85  

From grassland 2.08  1.55  1.94  0.21  

From wetland 64.01  378.40  111.48  395.38  

From unused land 0.14  -1.75  0.07  -0.08  

Total 175.51  422.90  230.62  414.36  

 

For most regions in Hubei, the loss of ESV in the optimized land use allocation will be less than 

that loss in the non-optimized land use allocation. Compared to the loss of ESV in Jingzhou in 

the non-optimized land use allocation, the loss will be 36.67×106 US$ less than that in the 

optimized land use allocation.  

 

 

 

Table 6 

Difference of loss in ESV in Hubei from 2010 to 2030 between the optimized and non-

optimized land use allocations (106 US$).  

 Optimized land use 

allocation  

Non-optimized land use 

allocation 
Difference* 

Shiyan 8.18  8.02  0.16  

Xiangfan 54.63  56.68  -2.05  

Jingmen 40.71  42.20  -1.49  

Xiaogan 42.35  48.91  -6.56  

Huanggang 25.79  26.62  -0.83  

Wuhan 106.83  110.63  -3.80  

Ezhou 11.06  14.79  -3.73  

Huangshi 8.95  13.18  -4.22  

Xianning 28.05  22.89  5.16  

Jingzhou 149.88  186.54  -36.67  

Enshi 6.20  5.75  0.45  

Yichang 12.11  17.92  -5.81  

Jianghan 93.74  81.96  11.78  

Suizhou 9.88  8.84  1.05  

Shennongjia 0.05  0.05  0.00  

Total 598.41  644.98  -46.57  

* Difference = Loss of ESV in the optimized land use allocation - Loss of ESV in the non-

optimized land use allocation 

3.3. The performance of optimized land use allocation 

In the most regions of Hubei, the optimized land use allocation can performance well in 

increasing the economic value from agriculture production and reducing the loss the ESV 

(Table 7). The optimized land use allocation makes Jingzhou increase economic value from 

agricultural production with 2.49×106 US$, while the loss of ESV will reduce 36.67×106 US$. 

Optimizing Land Use Allocation to Balance Urban Expansion, Cropland Protection, and Conservation of Ecosystem

Services (10552)

Lanping Tang and Xinli Ke (China, PR)

FIG Working Week 2020

Smart surveyors for land and water management

Amsterdam, the Netherlands, 10–14 May 2020



Therefore, Jingzhou will increase economic value by 39.16×106 US$ in total. This is ture for 

most regions. In contrast, the economic value from agricultural production in Enshi and Suizhou 

will decrease, but the loss of ESV will increase. Comparatively, the economic value from 

agricultural production in Shiyan and Xianning will increase, but the loss of ESV will also 

increase. The economic value from agricultural production in Yichan will decrease, and the loss 

of ESV will also decrease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

The performances of the optimized land use allocation (106 US$). 

Regional 

name 

Performance in increasing economic 

value from agricultural production 

Performance in reducing 

loss of ESV 
Balance 

Shiyan 0.94  -0.16  0.78  

Xiangfan 3.41  2.05  5.46  

Jingmen 1.52  1.49  3.01  

Xiaogan 0.65  6.56  7.21  

Huanggang 1.07  0.83  1.90  

Wuhan 0.02  3.80  3.82  

Ezhou 0.02  3.73  3.75  

Huangshi 0.21  4.22  4.43  

Xianning 0.44  -5.16  -4.72  

Jingzhou 2.49  36.67  39.16  

Enshi -0.06  -0.45  -0.51  

Yichang -0.05  5.81  5.76  

Jianghan 1.56  -11.78  -10.22  

Suizhou -0.35  -1.05  -1.40  

Shennongjia 0.00  0.00  0.00  
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Total 11.86  46.57  58.43  

4. DISCUSSION 

An optimized land use allocation was explored in this study, which can meet the demand for 

both urban land and cropland in quantity, while maximizing the productivity of cropland and 

minimizing the loss of ESV. Given that the conflicts among urban expansion, cropland 

protection, and conservation of ecosystem services have been the subject of increased concern, 

it is significant to explore a sustainable land use allocation to balance urban expansion, cropland 

protection, and conservation of ecosystem services (Jiang et al., 2012; Zheng et al., 2019b). In 

the optimized land use allocation in this study, the urban area can be meet the demand of 

economic development. Moreover, it is helpful to protect the quantity and the quality of 

cropland. Meanwhile, the land which has high ecosystem services can be conserved with 

priority. The optimized land use allocation in 2030 will meet the demand for both urban land 

and cropland in quantity, meanwhile, the potential agricultural yield will increase by 361 

kg/km2 (which can make cropland economic value increase 12.71×106 US$ to 13.37×106 US$), 

and the loss of ESV will decrease by 46.57 million US$. 

The proposed optimisation model in this study considered the spatial difference of both 

potential agricultural yield and ecosystem services into the land use allocation. The optimized 

model is feasible to allocate land resources to achieve the synergy among urban development, 

protection of cropland in quantity and quality, and conservation of ecosystem services. Previous 

studies mostly focused on the optimized land allocation to mitigate the trade-offs between 

urbanization and protection of cropland quantity, between urbanization and protection of 

ecosystem services, and agriculture and ecosystem service (Zhang et al., 2016; Zheng et al., 

2019b; Kennedy et al., 2016). Although Zheng et al. (2019b) explored the optimized land use 

to balance urban development and the ecosystem services, they ignored the impacts of cropland 

expansion on ecosystem services. Groot et al. (2018) formed the optimized land use allocation 

based on the trades-offs between different ecosystem services, they did not consider the threats 

of urban expansion and cropland expansion on ecosystem services. Land use changes are 

dynamic and cascading processes, land use changes can interact with each other. Therefore, the 

land use allocation should be optimized in a systematic perspective. The LANDSCAPE model 

is widely used to simulate multiple land use changes by hierarchical allocation strategy and 

partition asynchronous, and can be related to the impacts of land use policies  (Ke et al., 2017; 

Zheng et al., 2019a, 2019b). The LANDSCAPE model is suitable to be applied in optimizing 

the land use allocation to obtain multiple objectives, incorporating the spatial and temporal 

dimensions of parameters such as resistance, suitability (Zheng et al., 2019b).   

The study indicated that it is feasible to consider the spatial differences of both potential 

agricultural yield and ESV is an available approach to achieve the synergy among urban 

development, protection of cropland in quantity and quality, and conservation of ecosystem 

services. The optimisation model of land use allocation can be used to make a sustainable land 

use planning. Land use planning in early years mainly focused on economic benefits, posing 

the threat to quality of cropland (Liu et al., 2015b) and ecological protection (Wang et al., 2018). 

However, with the increased attention to quality of cropland and ecosystem services nowadays, 

it is not reasonable in land use planning which only aims to achieve the demand for economic 

development or quantity protection of cropland. The conflicts among urban expansion, cropland 

Optimizing Land Use Allocation to Balance Urban Expansion, Cropland Protection, and Conservation of Ecosystem

Services (10552)

Lanping Tang and Xinli Ke (China, PR)

FIG Working Week 2020

Smart surveyors for land and water management

Amsterdam, the Netherlands, 10–14 May 2020



protection, and conservation of ecosystem services not only exist in Hubei, but other regions 

worldwide. Therefore, the perspective and the method used in this study can be applied further 

in the land use planning.  

The limitations in the study are as follows. (1) The price of crops to assess the economic value 

was from the published study of Chen et al. (2012) instead of predicting the price by ourselves. 

Thus, the study can’t provide specific impacts economic value of agriculture production in 2030.  

(2) The ESV of each land use type is set at a fixed value in the unit value-based approach, but 

the ESV of the same type of land use can vary both from region to region and from time to time 

in reality. Therefore, it is necessary to consider the spatial-temporal heterogeneity of carbon 

density into the approach. 

5. CONCLUSIONS 

Based on the spatial difference of both potential agricultural yield and ESV in the 

LANDSCAPE model, it is feasible to optimize land use allocation was explored in this study 

to achieve the synergy among urban development, protection of cropland in quantity and quality, 

and conservation of ecosystem services. Specifically, the spatial difference of potential 

agricultural yield was expressed as parameter of suitability, while the spatial difference of ESV 

was represented by the parameter of resistance. The optimized model is feasible to allocate land 

resources to achieve the synergy among urban development, protection of cropland in quantity 

and quality, and conservation of ecosystem services. The optimized land use allocation will 

meet the demand for both urban land and cropland in quantity, meanwhile, the potential 

agricultural yield will increase by 361 kg/km2 (which can make cropland economic value 

increase 12.71×106 US$ to 13.37×106 US$), and the loss of ESV will decrease by 46.57 million 

US$. Therefore, it is important to take the spatial difference of both potential agricultural yield 

and ESV into consideration in land use planning. 
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