

SMART SURVEYORS FOR LAND AND WATER MANAGEMENT

The New ISO Standard for a Field-Testing Procedure of Terrestrial Laser Scanners and its Practical Performance

ITC

Presented at the Fig Working Week 2020, Presented at the Fig Working Week 2020, 10-14 Way 2020 in Amsterdam, the Netherlands

SMART SURVEYORS FOR LAND AND WATER MANAGEMENT

The New ISO Standard for a Field-Testing Procedure of Terrestrial Laser Scanners and its Practical Performance

Ingo Neumann, Franziska Altemeier, Hamza Alkhatib (Leibniz University Hannover, Germany)

Bianca Gordon (Leica Geosystems AG, Heerbrugg, Switzerland)

Ri Fi Fi

General information

Focus of this collection of ideas / proposals

- Simple, fast, reliable checking of the instrument specifications
 - Within a few hours
 - (Measurement) Uncertainty
 - Detection of non acceptable (systematic) deviations
- The procedure(s) must be independent (manufacturer)
- No laboratory procedures
- No calibration
- Methods which fit into the testing philosophy of ISO 17123 (DIN 18723)
 - Simplified and full test procedure
 - Independent procedure with standard equipment

1. General Information

2. Test procedure

- i. Simplified Test Procedure(s)
- ii. Full Test Procedure(s)
- 3. Sensitivity of the test procedure(s)
- 4. Measurement uncertainty (thresholds)
- 5. Conclusions

General information

2011 Proposal for a full/extended test procedure (Feldmann, Petersen, Staiger)

 \Rightarrow Reference distances (coordinates) for full procedure to consider the scale of the TLS measurements.

2012 - 2014: DVW - technical Bulletin for a test procedure: (F. Neitzel; B. Gordon; D. Wujanz; WG 3 of DVW)

 \Rightarrow mainly following the ideas of Heister / Staiger (2009)

2014 - 2018 ISO WIP for a simple and full test procedure: (17123-9; under the lead from the DIN Working group)

 \Rightarrow mainly following the ideas of the DVW - technical Bulletin

Future Extend and/or translate the ISO 17123-9 for DIN 18723

General information

Verson 1.8 85.88.2814)

DVW Bulletin

DVW-Merkblatt 7-2014

Berechnungsformular zum DVW-Merkblatt "Verfahren zur standardisierten Überprüfung von terrestrischen Laserscannern" VVW - Gesellschaft für Seodisie, Seoinformation und Landmanagement e. V.

I. Defalas der Tealgröße

DVW

Hennunkerkel der Zen<u>arkennenle</u>rn n.D. am Hernlereangaben): 1,8

→ Vergenbageille U_: 4,8 am

II. Kaardaalea dee Zemarkenmilepankie

		Zomarke T	-		Zomarke T			Zemarke T			Zomarke T	
19 ⁻	- -	11-1	- -	- -	11-1	- -	- -	1-1	- [-]	- -	11-1	- -
1 1	1,3521	4,5111	-4,8552	1,5178	43,8733	1,1597		51,5838	1,101	1,5167	45,8775	15,5557
1 1	1,3527	4,3147	-4,833	1,6103	43,8775	1,8522		\$1,5872	1,1524	1,6131	- 43,8738	13,3353
1 2	1,3521	4,3131	-4,000	1,5187	0,070	1,8532		51,5836	1,000	1,5145	43,8753	13,3333
"												
gemillele												
Kunedualen	1,3621	4,3113	-1,1336	1,610	43,8785	1,1594		\$1,5005	1,1974	1,6103	43,1714	13,3383

		Zemarke T	,		Zemarke T			Zemarke T	5		Zemarke T	
19 ²	- -	1-1	- -	- -	1-1	- -	- -	1-1	- -	- -	1-1	- -
1 1	17,0050	25,7548	- 4,855	-2,5757	-4,2111	1,1971	31,7815		1,1275	-2,5748	-4,2585	21,1003
4	17,8853	23,7584	-4,8323	-2,5755	-4,2017	1,1371	21,7844		8,1235	-2,5785	-4,2558	21,1435
1 3	17,8851	25,7554	-4,851	-2,5752	-4,2117	1,014	31,7844		8,4274	-2,5748	-4,2585	28,8433
geallele												
Kanedaalea	17,0057	25,7554	-1,1101	-2,5754	-4,2007	1,1373	31,7834		1,1212	-2,5714	-4,2584	21,1433

III. Slevaken annaken den Zemarken

	Steenkenne, nank[m]	Zemarke T ₁	Zemarke T,	Zemarke T,	
=	Zemarke T,	55,7245			
	Zemarke T,	55,5742	53,5367		
	Zemarke T,	44,5155	13,3443	44,5711	

	Sleenke oon, nank [m]	Zemarke T ₁	Zemarke T,	Zemarke T,
1	Zemarke T,	55,7121		
3-	Zemarke T,	56,3655	99,9955	
	Zemarke T,	44,5114	13,3468	44,6782

IT. Slevabradffereases

Sleenkendfferenså [mm]	Zemarke T ₁	Zemarke T,	Zemarke T,
Zemarke T,	3,4		
Zemarke T,	5,7	1,2	
Zemarke T,	5,5	4,4	1,5

T. Ergebon

Kunslaule, ugulemal, Dulannue unabus: 4,7 ---

Synfbaule Bulanahurnhung! Kene melere Anagar bay, makeföringer Akurahangen!

Verfahren zur standardisierten Überprüfung von terrestrischen Laserscannern (TLS)

Fachautoren: Frank Neitzel, TU Berlin Bianca Gordon, Leica Geosystems AG Daniel Wujanz, TU Berlin

Weitere Beteiligte: DVW Arbeitskreis 3 DVW Arbeitskreis 4 Arbeitsgruppe Terrestrisches Laser Scanning - TLS Gesellschaft zur Kalibrierung geodätischer Messmittel e. V Technical Committee ISO/TC 172/SC 6

Beschlussfassung: Beschlossen vom DVW Arbeitskreis 3 am 25.03.2014 Verabschiedet vom Präsidium des DVW am 16.05.2014

> Dokumentenstatus: verabschiedet

<u>https://www.dvw.de/veroeffentlichungen/merkblaetter</u> \rightarrow TLS

ISO 17123-9

General information [©]

Status : @ Published

Edition: 1

General information

INTERNATIONAL STANDARD 17

17123-9

First edition 2018-12

ISO

Optics and optical instruments — Field procedures for testing geodetic and surveying instruments —

Part 9: Terrestrial laser scanners

> 7T08:46:58.435 and networking prohibited

Optique et instruments d'optique — Méthodes d'essai sur site des instruments géodésiques et d'observation — Partie 9: Scanners laser terrestres

https://www.iso.org/standard/68382.html

ICS: 17.180.30 Optical measuring instruments

Optics and optical instruments — Field procedures for

Publication date: 2018-12

Number of pages: 43

testing geodetic and surveying instruments

Project leader: Ingo Neumann (DIN, Germany)

Technical Committee : ISO/TC 172/SC 6 Geodetic and surveying instruments

Part 9: Terrestrial laser scanners

Reference number

© ISO 2018

ISO 17123-9:2018(E)

7

General information

Overview on the actual test procedure(s)

Procedure	DVW Bulletin	ISO-Group (ISO 17123-9)	DIN Working Group (DIN 18723)	Proposal of Feldmann et al. (2011)
Simple		Yes	Yes	(Yes)
Full	(Yes)	Yes	Yes	Yes
Extended (reference distances)			Under discussion	Yes (with fix installed targets)
Measurement Uncertainty	Partly	Yes	Yes	partly

Simple: Red / Green decision without statistical treatmentFull: Repeated observations with statistical checking/judgement of the resultsExtended: Introduction of reference distances

fix installation

1. General Information

2. Test procedure

- i. Simplified Test Procedure(s)
- ii. Full Test Procedure(s)
- 3. Sensitivity of the test procedure(s)
- 4. Measurement uncertainty (thresholds)
- 5. Conclusions

Test procedure

ISO 17123-9: Configuration of the "simplified and full test procedure"

Key	
S ₁ , S ₂	instrument station
T_1, T_2, T_3, T_4	target point
d_{m}	maximum distance

- 4 Targets (T_i)

- 2 Instrument stations (S_i)
- 1 measurement on S_i (simple procedure)
- 3 independent measurement on S_i

 \rightarrow All 4 targets are determined 3 x 2 (full procedure)

ISO 17123-9

Test procedure

ISO 17123-9: Configuration of the "simplified and full test procedure"

Figure 3 — Instrument orientations on both positions (side view)

Test procedure

ISO 17123-9: Configuration of the "simplified and full test procedure"

Station 1 (S ₁)	Station 2 (S_2)
(T1−T2)(1) 🖨	▲ ₁ (T1 – T2)(2)
2 x addi	tional constant
(T1 – T3)(1) ⇒	∆ ₂ (T1 − T3)(2)
(T1 – T4)(1) ⇒	Δ ₃ (T1 – T4)(2)
(T2 – T3)(1) ⇒	∆ ₄ (T2 − T3)(2)
(T2 – T4)(1) ⇒	Δ ₅ (T2 – T4)(2)
(T3 – T4)(1) ⇒	Δ ₆ (T3 – T4)(2)
Mastimportant	

Test procedure – summary

- 1. General Information
- 2. Test procedure
 - i. Simplified Test Procedure(s)
 - ii. Full Test Procedure(s)
- 3. Sensitivity of the test procedure(s)
- 4. Measurement uncertainty (thresholds)
- 5. Conclusions

Simulation of most important calibration parameters (Altemeier, 2018)

Geometric model according to Muralikrishnan et al. (2015) (selected parameters)

Parameter	Description	Influence on
<i>x</i> ₄	Vertical index offset	$\Delta V m$
<i>x</i> _{5<i>n</i>}	Beam tilt component along n	ΔHm , ΔVm
<i>x</i> _{5<i>z</i>}	Beam tilt component along z	ΔHm , ΔVm
<i>x</i> ₆	Mirror tilt	ΔHm
<i>x</i> ₇	Transit tilt	ΔHm
<i>x</i> ₁₀	Zero-offset (Bird-bath error)	ΔRm

Muralikrishnan et al. (2015)

 x_6

Simulation of most important calibration parameters (Altemeier, 2018)

Selection of the simulation parameters	 Selected instrument Configuration of the test field Magnitude of the systematic deviations (x₄, x_{5n}, x_{5z}, x₆, x₇, x₁₀)
Simulation of reference values	• Polar elements: Distance (R), Horizontal direction (H), Vertical angle (V)
Adding the systematic error	• Geometric model after Muralikrishnan et al. (2015): ΔRm , ΔHm , ΔVm
Randomize the observations	 Generate random deviations (according to the instruments data sheet) → 3 observation sets: measurement values <i>Rm</i>, <i>Hm</i>, <i>Vm</i>
Apply testing procedure ISO 17123-9	• Transformation to the cartesian coordinates of the target centers: <i>X</i> , <i>Y</i> , <i>Z</i> • Calculation and testing of the distance deviations: $ \overline{\Delta}_{i,j} > U_{\Delta}/\sqrt{3}$
	Calculation and testing of the distance deviations. $ \Delta_{i,j} > 0_A / \sqrt{3}$

16

Small influence

Simulation of most important calibration parameters (Altemeier, 2018)

- Influence of the measurement configuration ٠
 - Variation of the test field size (d_m)
 Variation of the height of target T4

 - Violation of the test field configuration (X and Y) Small influence
 - Deviation of other criteria (Perpendicularity, 5 m, ...)
- Influence of the systematic deviations under ٠

- Variation of individual parametersCombination of minimum two parameters
- Determination of the threshold for the judgement of the TLS ٠

Not treated in this presentation

Simulation of most important calibration parameters (Altemeier, 2018)

Influence of the measurement configuration

Simulation of most important calibration parameters (Altemeier, 2018) Influence of the measurement configuration

Simulation of most important calibration parameters (Altemeier, 2018)

Identification of sensitive distances

Simulation of most important calibration parameters (Altemeier, 2018)

Percentage

instrument

Combination of parameters

e.g. parameter x_4 with x_7 :

											"ok"	
	20	0	0	0	0	0	0	0	0	0.006		0.9
	15	0	0	0	0	0	0	0.004	0.236	0.852	_	0.8
	10	0	0	0	0	0.005	0.214	0.834	0.993	0.995	_	0.7
_	5	0	0	0.003	0.183	0.831	0.997	0.998	0.988	0.781	_	0.6
[mgo	0	0.002	0.159	0.784	0.99	0.996	0.995	0.78	0.162	0.003	_	0.5
X4	-5	0.749	0.986	0.993	0.994	0.817	0.2	0.002	0	0	_	0.4
	-10	0.998	0.997	0.833	0.211	0.006	0	0	0	0	_	0.3
	-15	0.858	0.223	0.006	0	0	0	0	0	0	_	0.2
	-20	0.007	0	0	0	0	0	0	0	0	_	0.1
		-20	-15	-10	-5	0	5	10	15	20		0
					x	7 [mgo	n]					

Result:

- Compensation/ amplification of the influences
- Sensitivity of distance differences changes
- Depending on the magnitude and sign of the parameters
- \rightarrow Inference difficult

Empiricial evaluation and validation of the results

Evaluation of real measurements (Leica Geosystems AG)

- Measurements according to ISO 17123-9 (full test procedure)
- Systematically manipulated calibration parameters $(x_4, x_{5n}, x_{5z}, x_6, x_7)$

Results:

- Sensitivity proofed
- Inference on manipulated parameters possible (for individual parameters)

- 1. General Information
- 2. Test procedure
 - i. Simplified Test Procedure(s)
 - ii. Full Test Procedure(s)
- 3. Sensitivity of the test procedure(s)

4. Measurement uncertainty (thresholds)

5. Conclusions

(Measurement) uncertainty

Quantification for the measurement uncertainty (MU)

Guide to the Expression of Uncertainty in Measurements (GUM)

- ISO [1995]: Evaluation of Measurement Data Guide to the Expression of Uncertainty in Measurement (GUM). Eds: BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML.
- Detection of all significant influence factors on the MU is requested
- For random, systematic (and non modelled) effects
- Consideration of type "A" and type "B" uncertainties

Thresholds for the comparison of the distance differences

- A) Based on manufacturer / project requirements
- B) Based on the measurements itself (only if no other information is available)
- C) Combination of B) and numerical calculation of MU

(Measurement) uncertainty

Quantification for the measurement uncertainty

Characteristics of type "A" and type "B" uncertainties

- Type A:
 - Uncertainties that can be obtained from repeated measurements with the aid of statistical methods
 - Approximation of the distribution
 - Often a simple mean and the standard deviation of a measurand
- Type B:
 - Uncertainty that is obtained by other methods (as statistical analysis)
 - e.g. values from previous measurements, expert knowledge, manufacturer information, calibration certificates, books,
 - The consideration of this type of uncertainty need a (very) good knowledge about the sensors and the underlying measurement process

- 1. General Information
- 2. Test procedure
 - i. Simplified Test Procedure(s)
 - ii. Full Test Procedure(s)
- 3. Sensitivity of the test procedure(s)
- 4. Measurement uncertainty (thresholds)

5. Conclusions

Conclusions

- Summary
 - Reversal of the burden of proof \rightarrow high relevance
 - ISO 17123-9 is recommended (but DVW Bulletin still ok)
 - DVW only uses 3 important distances as decision criterion
 - DVW has not a detailed uncertainty treatment
 - Very high sensitivity with respect to typical calibration models
 - Very fast measurements and analysis procedure (2h 3h)
- Further comments:
 - DIN and ISO will maybe have different content of the documents
 → difference lies mainly only in the "extended" version
 - The collaboration between the different institutions is beneficial
 - DVW Bulletin will most probably be updated

Thanks a lot for the attention and contributions!

References

- Altemeier, F. (2018). Sensitivitätsanalyse zur geometrischen Untersuchung des Unsicherheitsmodells von TLS-Messungen. Master thesis, Leibniz Universität Hannover, Geodätisches Institut, unpublished.
- Feldmann, E., Petersen, M., Staiger, R. (2011). Erste Erfahrungen mit Feldprüfverfahren für terrestrische Laserscanner. In *Terrestrisches Laserscanning – TLS 2011 mit TLS-Challenge. Schriftenreihe des DVW*, Wißner-Verlag, Augsburg (66), pp. 77-94.
- ISO 17123-9 (2018). Optics and optical instruments Field procedures for testing geodetic and surveying instruments – Part 9: Terrestrial laser scanners. – International Organization for Standardization. <u>https://www.iso.org/standard/68382.html</u>.
- Muralikrishnan, B., Ferrucci, M., Sawyer, D., Gerner, G., Lee, V., Blackburn, C., Phillips, S., Petrov, P.; Yakovlev, Y., Astrelin, A., Milligan, S., Palmateer, J. (2015). Volumetric Performance Evaluation of a Laser Scanner Based on Geometric Error Model. In *Precision Engineering – Journal of the International Societies for Precision Engineering and Nanotechnology* (40), pp. 139–150.
- Neitzel, F., Gordon, B., Wujanz, D. (2014). Verfahren zur standardisierten Überprüfung von terrestrischen Laserscannern (TLS). In *DVW-Merkblatt 7-2014*. <u>https://www.dvw.de/veroeffentlichungen/merkblaetter</u>.
- Staiger, R., Heister, H. (2013). Praxisnahe Prüfung terrestrischer Laserscanner. In *Qualitätssicherung geodätischer Mess- und Auswerteverfahren. Schriftenreihe des DVW*, Wißner-Verlag, Augsburg (71), pp. 65-88.

SMART SURVEYORS FOR LAND AND WATER MANAGEMENT

The New ISO Standard for a Field-Testing Procedure of Terrestrial Laser Scanners and its Practical Performance

Contacts	Prof. DrIng. Ingo Neumann Geodetic Institute Leibniz University Hannover Nienburger Str. 1 30167 Hannover, GERMANY Tel. +49 5117622461 Email: neumann@gih.uni-hannover.de Website: <u>www.gih.uni-hannover.de</u>	l i l o g 2 Lo g ? 4 Lo g ? 4	DrIng. Hamza Alkhatib Geodetic Institute Leibniz University Hannover Nienburger Str. 1 30167 Hannover, GERMANY Tel. +49 5117622464 Email: alkhatib@gih.uni-hannover.de Website: www.gih.uni-hannover.de	l; l u; 2; 2 u; 0; 4 Universität Hannover
	Franziska Altemeier M.Sc. Geodetic Institute Leibniz University Hannover Nienburger Str. 1 30167 Hannover, GERMANY Tel. +49 5117622468 Email: altemeier@gih.uni-hannover.de Website: <u>www.gih.uni-hannover.de</u>	<i>l</i> ; <i>l</i> log 2 universität Hannover	DrIng. Bianca Gordon Senior Systems Engineer Leica Geosystems AG Heinrich-Wild-Str. 9435 Heerbrugg, SWITZERLAND Email: bianca.gordon@leica-geosystems.com Website: <u>https://leica-geosystems.com/</u>	Leica Geosystems

BL.B.B.A

