

WORKING WEEK 2021 20-25 JUNE

Christian CLEMEN, Tim KAISER, Enrico ROMANSCHEK and Marcus SCHRÖDER, Germany

Site Plan for BIM? — A Free and Open Source Plug-In for As-Is Vicinity Models

24.06.2021, 11:45-12:00 CET

- 1. Georeferencing
- 2. DTM
- 3. CityModel
- 4. Land information
- 5. CAD2BIM
- 6. IFC-Export

(1) Georeferencing

- Use case: place geo-referenced models in the exact and coordinated position and elevation.
- Georeferencing **deficiencies** of **Revit**: very complicated
 - several dialogs
 - different possible coordinate systems
 - transformation parameter not consistent to geographic ccord.
 - scale of projection / height reduction missing
- Relation to IFC:
 - user defined IFC property sets for georeferencing (IFC2x3/IFC4)

R Georeferencin	g				- 🗆 X
Postal Address					
	Address lines:	Projektadresse			
		Projektadresse			
	Postal Code:	Projektadresse	Town:	Projektadresse	
	Region:	Projektadresse	Country:	Projektadresse	
Geographic site	coordinates				
0	Latitude [°]:	+48.75940030	● Deg ○ DMS		UTM transformation
	Longitude [°]:	+11.43917316	True North [°]:	0.000000000	Site (LatLon) to Projection (UTM)
Projected coord	linates				O Projection (UTM) to Site (LatLon)
1	Eastings [m]:	679257.9999	Northings [m]:	5403579.9995	Calculate
/KA	Scale:	0.999930308	Grid North [°]:	358.165382875	
			EPSG-Code (CRS):	EPSG:25832 ~	
Elevation					Apply
	Orthometric Height [m]: 365.0000	Vertical Datum:	DHHN2016 ~	Close

- Scale of projection
- Consideration of meridian convergence
- Calculation between
 WGS84 (Lat. & Lon.) ←→ ETRS89 UTM

IfcMapConversion

Parameter	Value	
Data		*
Eastings	679257,999900	
Northings	5403579,999500	
OrthogonalHeight	365,000000	
XAxisAbscissa	1,000000	
XAxisOrdinate	0,000559	
Scale	0,999930	
Name	EPSG:25832	
Description		
GeodeticDatum		
VerticalDatum	DHHN92	
MapProjection		
MapZone		

(2) Digital Terrain Model (DTM)

Use case:

- **DTM** consumed from: spatial data infrastructure (SDI) / surveyor has measured to create a high quality DTM (without BIM tools)
- Import of as-is terrain to BIM project & representation of actual terrain (clash detection)
- Projection surface (2D data points, lines, surfaces)

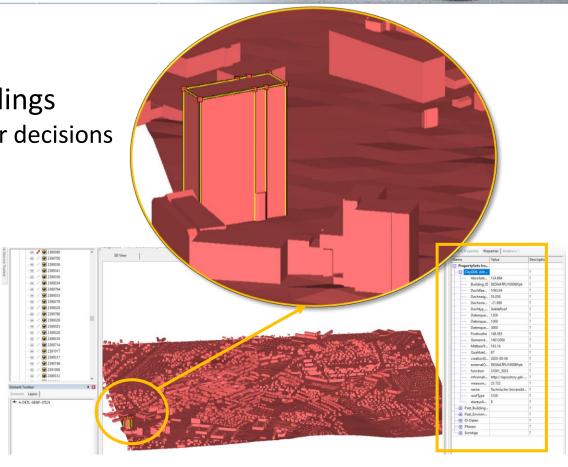
DTM deficiencies of Revit:

- only a few data formats for terrain import
- breaklines are not evaluated

Relation to IFC:

extended IFC export options (assign to IFC entities & IFC geometry types)

(3) City Model

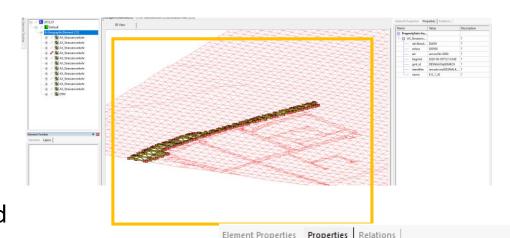

• Use case: geographic context for planning of buildings

aesthetics, shading and simulations – important role for decisions

building law, spacing areas

City model deficiencies of Revit:

- can not imported with native Revit
- via API solids or face geometries are possible
- Relation to IFC:
 - Buildung structures in vicinity can exported to IFC
 - semantic for environment models are created as IfcBuildingElementProxies
 - all semantic data transferred to IFC (IfcPropertySets)



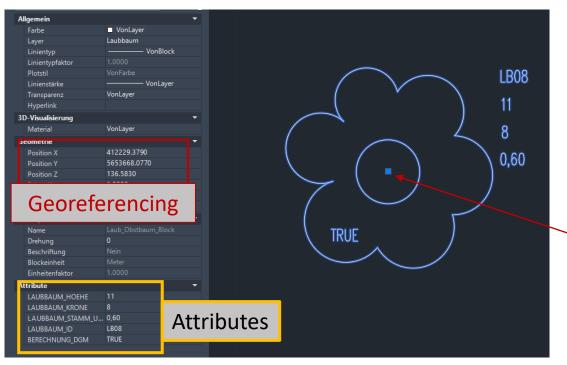
(4) Land Information

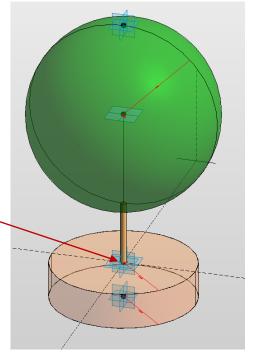
- Use case: link logically property-related data
- Land Information deficiencies of Revit:
 - Geospatial data cannot be imported
 - restrictions of geographical topics such as property and land use
- Relation to IFC:
 - created sub-regions exported to IFC as IfcSite/ IfcGeographicElement
 - imported or edited properties are exported to IFC model

Name		Value	Description
Prope	tySets fro		
AX_Strassenv			?
	advStand	DLKM	?
	anlass	300500	?
	art	urn:sn:fdv:3000	?
	beginnt	2020-06-05T12:13:54Z	?
	gml_id	DESNALK0q8004EOt	?
	identifier	urn:adv:oid:DESNALK	?
	name	612_1_20	?

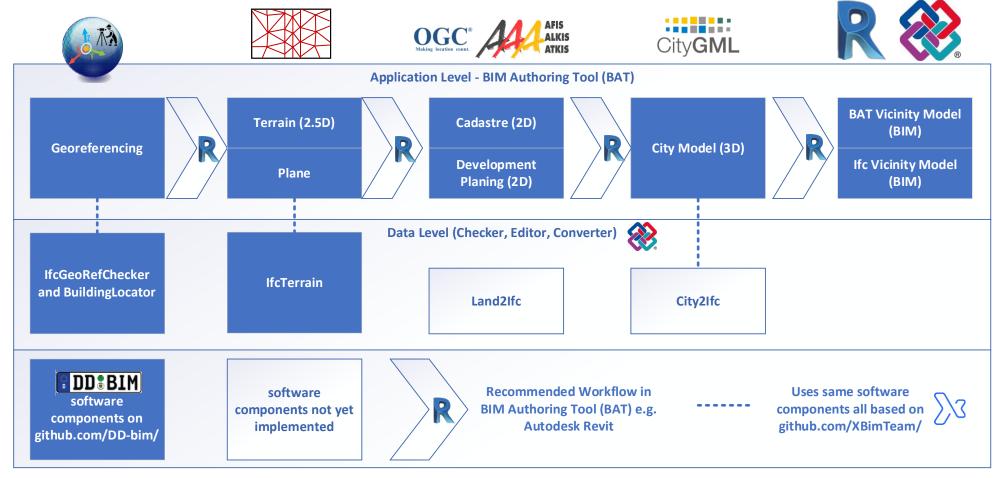
(5) CAD2BIM – Measured Surveys

- Use case:
 - model of (measured) outside area can be used for checking collisions
 - quality assurance (completeness of the attribution, consistency with information requirement specifications)
- CAD2BIM deficiencies of Revit:
 - not supported CAD import with programmatically implemented object creation
 - Revit API support many possibilities to create object templates (parametric behaviour)
- Relation to IFC:
 - supported via normal IFC export (Revit, not our-plug-in)





Materialien und Oberflächen			*
Information_unscharf (Vorgabe)	Information - unscharf	=	
Material_Krone	Laub	=	
Daten			*
Art (Vorgabe)		=	
LB_Hoehe (Vorgabe)	16000,0	=	
LB_Kronen_Durchmesser (Vorgabe)	12000,0	=	
Kronenlagepunkt (Vorgabe)	10000,0	= LB_Hoehe - LB_K_Radius	
LB_K_Radius (Vorgabe)	6000,0	= LB_Kronen_Durchmesser / 2	
LB_Stamm_Durchmesser (Vorgabe)	382,0	= LB_Stamm_Umfang / pi()	
LB_Stamm_Radius (Vorgabe)	191,0	= LB_Stamm_Durchmesser / 2	
LB_Stamm_Umfang (Vorgabe)	1200,1	=	
Radius_Wurzel (Vorgabe)	4584,0	= LB_Stamm_Durchmesser * 12	
Wurzel_Tiefe (Vorgabe)	2292,0	= Radius_Wurzel / 2	
ID-Daten			



Contact:

Christian Clemen (christian . clemen (at) htw-dresden.de)

Link to our GitHub Repository:

https://github.com/dd-bim/City2BIM

