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SUMMARY  

 

Msplit estimation is a modern estimation method that is a development of the maximum 

likelihood estimation. The basic assumption of Msplit estimation is that an observation set is a 

mixture of realizations of at least two different random variables. In other words, the 

observation set might consist of different observation groups (aggregations), which differ from 

each other in location parameters. The main objective of Msplit estimation is to assess such 

parameters as different versions of the split functional model parameters. The first and basic 

variant of Msplit estimation is called the squared Msplit estimation, and it can be derived from the 

assumption that the measurement errors are normally distributed. Since this variant is sensitive 

to outlying observations, the absolute Msplit estimation has been introduced. This variant can be 

regarded as the least absolute deviation method development. It can be proved that the absolute 

Msplit estimation is less sensitive to outlying observations than the squared Msplit estimation. 

Both variants found several practical applications in geodetic data processing, e.g., deformation 

analysis, detection of gross errors, coordinates transformation, or laser scanning data 

processing. The last application seems especially interesting nowadays when the LiDAR 

technique becomes very popular. The laser scanning results, usually in the form of a point cloud, 

often contain measurements of different objects, e.g., terrain surface, buildings, engineering 

structures, or vegetation cover. Therefore, point clouds should be considered heterogeneous 

observation sets. Thus, such sets seem adequate to be processed by applying Msplit estimation. 

The paper shows the practical application of Msplit estimation in processing laser scanning data; 

approximation of one surface or two surfaces from a single observation set. The results are 

compared to the least squares estimation. One can conclude that both variants of Msplit 

estimation might provide better results, and for some types of point clouds, they should be 

recommended. 
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1. INTRODUCTION 

 

Modern measurement techniques often provide observation data that consist of thousands or 

even millions of measured points. Such data might result from the application of LiDAR (light 

detection and ranging) systems. Measurement data usually contain observations concerning 

different objects, e.g., terrain surface, buildings, engineering structures, or vegetation cover; 

hence data are heterogeneous. Processing heterogeneous data might cause problems if we do not 

realize that only part of the measured points concerns the study object. The question arises, how 

to separate the data from the object from disturbing data. One can apply one of the data cleaning 

procedures; however, they might sometimes fail (Baselga 2011; Chen et al. 2017). On the other 

hand, heterogeneous sets seem adequate to be processed by applying Msplit estimation, a modern 

estimation method that develops the maximum likelihood estimation (Wiśniewski 2009). The 

basic assumption of Msplit estimation is that an observation set is a mixture of realizations of at 

least two different random variables. In other words, the observation set might consist of varying 

observation groups (aggregations), which differ from each other in location parameters. The main 

objective of Msplit estimation is to assess such parameters as different versions of the split 

functional model parameters. The first and basic variant of Msplit estimation is called the squared 

Msplit estimation (SMS estimation). It can be derived from the assumption that the measurement 

errors are normally distributed (Wiśniewski 2009). Since this variant is sensitive to outlying 

observations, the absolute Msplit estimation (AMS estimation) has been introduced (Wyszkowska 

and Duchnowski 2019). Considering the form of the objective function, that variant can be 

regarded as the least absolute deviation method development. It can be proved that the absolute 

Msplit estimation is less sensitive to outlying observations than the squared Msplit estimation 

(Wyszkowska and Duchnowski 2019; Wyszkowska et al. 2021). Both variants found several 

practical applications in geodetic data processing, e.g., deformation analysis (e.g., Wiśniewski 

2009; Wiśniewski and Zienkiewicz 2016; Zienkiewicz et al. 2017; Wyszkowska and Duchnowski 

2019), detection of gross errors (Li et al. 2013), circle object detection (Janowski 2018; Baselga 

et al. 2021), laser scanning data (Janowski and Rapiński 2013; Błaszczak-Bąk et al. 2015; Janicka 

et al. 2020; Wyszkowska et al. 2021), processing coordinates transformation (Janicka and 

Rapiński 2013), S-transformation (Nowel 2019; Guo et al. 2020), linear regression (Wiśniewski 

2010; Wyszkowska and Duchnowski 2019), or marine navigation (Zienkiewicz and Czaplewski 

2017; Czaplewski et al. 2019).  

This paper focuses on processing heterogeneous data, namely point clouds obtained from 

LiDAR systems, by applying Msplit estimation. We assume that data contain some disturbing 

points resulting from measurements of different objects, not the study object. In that context, 

such mismeasured points might be classified as outliers (Carrilho and Galo 2019; Wyszkowska 

et al. 2021). When applying Msplit estimation, one can distinguish two main variants. The natural 

approach to that estimation method is estimating two (or more) parameter variants describing 

two surfaces, profiles, etc. In the latter approach, one is interested only in one solution, and the 
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second solution is out of interest as describing the location or placement of outliers. Those two 

approaches are addressed by simulating different heterogeneous observation sets and estimating 

the functional model parameters by applying the methods in question. Finally, the results are 

compared to outcomes of more conventional variants of M-estimation, including least squares 

estimation (LS estimation). 

 

2. THEORETICAL FOUNDATIONS 

 

Considering geodetic observations, one usually uses their functional model in the following 

linear form 

  +=y AX v   (1) 

where:  1,...,
T

ny y=y  is an observation vector,  1,...,
T

nv v=v  is a vector of random errors, 

 1,...,
T

mX X=X  is a parameter vector, A is a known rectangular matrix of size n m ; here, it 

is assumed to be full column rank. Here it holds that the expected value ( )E =y AX . If one 

accepts the same accuracy for all observations, their weight matrix equals the identity matrix 

( )=P I . In such a case, the least squares (LS) estimate of the parameter vector can be given as 

follows 

 ( )
1

ˆ T T

LS

−

=X A A A y  (2) 

The model of Eq. (1) is not generally applicable in the case of Msplit estimation. Considering 

the general assumption of that method, the traditional functional model should be split into two 

competitive models (Wiśniewski 2009) 

 
(1) (1)

(2) (2)

= +
= +  

= +

y AX v
y AX v

y AX v
  (3) 

where: X(1) and X(2) are the competitive versions of the parameter vector X, v(1) and v(2) are the 

competitive versions of the vector of random errors v. During the estimation process, each 

observation is assigned to either of the split functional models. Here we assume two such 

models; however, it is also possible to split the conventional model into q competitive ones

( )q n , which leads to Msplit(q) estimation (Wiśniewski 2010).  

The competitive versions of parameters are computed in an iterative process that is based 

on the Newton-Raphson method. One can apply either of two schemes (Wyszkowska and 

Duchnowski 2020): 

- traditional iterative process 

 
( ) ( )

( ) ( )

1
1 1 1 1 1 1

(1) (1) (1) (1) (1) (1) (2) (1) (1) (2)

1
1 1 1 1 1 1

(2) (2) (2) (2) (2) (1) (2) (2) (1) (2)

, ,

, ,

j j j j j j j j

j j j j j j j j

d

d

−
− − − − − −

−
− − − − − −

 = + = −
 

 = + = −
 

X X X X H X X g X X

X X X X H X X g X X

 (4) 

- parallel iterative process 
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X X X X H X X g X X
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 (5) 

where: ( )ldX  is an increment to parameter vector, ( )(1) (2)( ) ,lH X X  are the Hessians, 

( )(1) (2)( ) ,lg X X  are the gradients, l is equal to 1 or 2. In both schemes, the Hessians and gradients 

are computed in the same following way 

 
( ) ( )

( ) ( )

(1) (1) (1) (2)

(2) (2) (1

(1) (2)

(1 () ) 2) (2 )

, 2 ,

, 2 ,
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=

H X X A w v v A

H X X A w v v A
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g X X A w v v v
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The matrices ( )( ) (1) (2),lw v v  are computed in the subsequent iterative steps by applying the 

weight functions related to the variant of Msplit estimates 

 
( ) ( ) ( )

( ) ( ) ( )

(1) (1) (2) (1) 1(1) 1(2) (1) (1) (2)

(2) (1) (2) (2) 1(1) 1(2) (2) (1) (2)

, diag , ,..., ,

, diag , ,..., ,

n n

n n

w v v w v v

w vvv w v

 =
 

 =
 

w v v

w v v
  (8) 

where: ( )diag  is a diagonal matrix. The traditional process is dedicated to the variants of  

Msplit estimation that use the mutual cross weighting, namely to the variants for which weight 

function ( )(1) (1) (2),i iw v v  depends only on (2)iv , and ( )(2) (1) (2),i iw v v  only on (2)iv . If the weight 

functions are defined in other ways, then one should apply the parallel iterative process 

(Wyszkowska and Duchnowski 2019, 2020).    

So far, two main variants of Msplit estimation have been introduced. The first and primary 

method in that context is called the squared Msplit estimation (SMS estimation), for which the 

weight functions are written as follows (Wiśniewski 2009) 

 
( )

( )

2

(1) (1) (2) (2)

2

(2) (1) (2) (1)

,

,

i i i

i i i

w v v v

w v v v

 =


=

  (9) 

The second variant, the absolute Msplit estimation (AMS estimation), was meant to be less 

sensitive to outlying observations than SMS estimation. Its objective function is derived from 

L1 norm condition, and the weight functions of AMS estimation are derived in the following 

forms (Wyszkowska and Duchnowski 2019) 
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where: c is an assumed small positive constant.  

The differences in the forms of the weight functions of both Msplit estimation variants are 

significant. They not only imply the possible scheme of getting a solution but also influence the 

main properties of those variants, which will be addressed in the following sections of the paper.  

 

3. EMPIRICAL TESTS 

 

Let us compare two variants of Msplit estimation and LS estimation in processing LiDAR 

data which are heterogeneous. We consider two main issues. The first one concerns the situation 

when an observation set of airborne laser scanning (ALS) data is a mixture of measured points 

at two different surfaces, and one is interested in estimating both surfaces. The second issue 

addresses the problem of outlying observations in terrestrial laser scanning (TLS) data. 

In the first numerical example, we consider simulated data that refer to two surfaces 

obtained by the ALS technique. Such observations (usually one point cloud of combined point 

clouds) might result from, for example, measuring the terrain (denoted P) covered by the 

vegetation (denoted P’). Let us assume that the profiles might describe the declared surfaces 

well enough. Hence, let us select 100 measurements that concern one example profile of 50 m 

long. For the simulation, we assume that the terrain profile is described by the second-degree 

polynomial (the assumed coefficients 2 0.002,c = 1 0.07,c = − 0 1c = ), and the vegetation cover by 

the second-degree polynomial of the coefficients 2 0.001,c =  1 0,c = 0 1c = . The observations are 

considered normally distributed, and their errors have the expected value of 0 mm and the 

standard deviation of 50 mm, which are acceptable for ALS data (Crespo-Peremarch et al. 

2018). It is also important to realize that some measured points might not concern the declared 

surfaces but other objects in the study area. Thus, they should be regarded as outliers in the 

context of estimating the terrain or vegetation profiles. For that reason, simulated data might 

also be randomly disturbed by gross errors from 0.20 m to 0.80 m. Taking the mentioned source 

of outliers, one assumes that gross errors concerning the terrain profile are considered positive. 

If gross errors involve the vegetation cover, they lead to negative outliers (Carrilho and Galo 

2019). The observation sets are simulated in three variants: A – observation set free of outliers, 

B – 10% of outliers within the observation set, and C – 30% of such observations. 
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The simulated observation sets can be processed by Msplit estimation. However, when 

applying the classical methods, one should consider two groups separately – observations of 

the terrain profile and observations of the vegetation cover. The problem is that we do not know 

the actual data division (the real assignment of each observation to either of the subsets). Thus, 

the subsets should be created a little bit artificially: consider ten intervals of 5 m long, in each 

interval select the largest-valued observations, accounting the half of all. They are assigned as 

measurements of the vegetation cover (denoted as y2), whereas the other observations as 

measurements of the terrain profile (denoted as y1). The simulated observation sets and their 

division into the subsets are presented in Fig. 1. 

 

 
Fig. 1. Simulated observation sets in Variants A, B, and C 

 

The simulated ALS data, the whole sets in the case of Msplit estimation and the subsets y1 

and y2 in LS estimation, are the base for estimating the polynomial coefficients that describe 

both profiles – the terrain and the vegetation cover. Such estimated coefficients allow one to 

compute the estimated profiles presented in Fig. 2. When comparing the estimated profiles with 

the respective simulated ones, the best-fitted profiles are those obtained by applying AMS 

estimation. SMS estimation cannot deal with outlying observations. It provides good results 

only in Variant A. LS estimation fails in all variants, and its effects are far from the simulated 

profiles. To describe the results in a better way, one can compute the accuracy of the fit of the 

estimated profiles to the simulated ones. Thus, the root-mean-square deviation (RMSD) be 

calculated by applying the following formula (e.g., Wyszkowska et al. 2021) 

 ( )
( )

2

0

ˆ

ˆ

n

i i
i

H H

RMSD H
n

=

−

=


 (11) 

where: ˆ
iH  are the estimated heights, and Hi are the simulated heights. Here n = 501, which is 

the number of points for which such heights are calculated for distances 0.1 mjD j=   
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( )0, ..., 500j = . RMSDs determined for all estimated profiles and variants are presented in  

Table 1, where (1)Ĥ  concerns the heights of the estimated terrain profiles whereas (2)Ĥ  the 

heights of the estimated profile of the vegetation cover. The obtained values confirm the 

conclusions resulting from the simple graphical analysis of profiles in Fig. 2. LS estimates are 

much more inaccurate than Msplit estimates. Table 1 also shows that in Variant A the best-fitted 

profiles are obtained by applying SMS estimation. 

 

 
Fig. 2. Simulated and estimated profiles of terrain (P) and vegetation cover (P’)  

in Variants A, B, and C 

 

Table 1. Accuracy of fit of the profiles in Variants A, B, and C 

Method Parameter Variant A Variant B Variant C 

LS estimation 
( )  (1)

ˆ mRMSD H  0.074 0.069 0.109 

( )  (2)
ˆ mRMSD H  0.333 0.329 0.317 

SMS estimation 
( )  (1)

ˆ mRMSD H  0.009 0.012 0.155 

( )  (2)
ˆ mRMSD H  0.018 0.042 0.156 

AMS estimation 
( )  (1)

ˆ mRMSD H  0.010 0.010 0.022 

( )  (2)
ˆ mRMSD H  0.029 0.007 0.070 

 

The application of LS estimation to processing the subsets in that example might be 

questionable. Fig. 1 shows that the declared subsets contain outlying observations that do not 

result from the gross error occurrence in all variants. Some terrain observations are included in 

Msplit Estimation as a Method for Processing Heterogeneous Data (11513)

Patrycja Wyszkowska and Robert Duchnowski (Poland)

FIG Congress 2022

Volunteering for the future - Geospatial excellence for a better living

Warsaw, Poland, 11–15 September 2022



 

the subsets of the vegetation cover observations and vice versa. Thus, let the subsets be 

processed by applying robust estimation methods, namely two variants of M-estimation, the 

Huber or Tukey method with the steering parameters k = 2 and 6, respectively (e.g., Baselga 

2007; Ge et al. 2013). Table 2 presents the accuracy of the fit of the estimated profiles based on 

M-estimates of the respective polynomials’ coefficients. Application of the robust M-estimates 

often improves the accuracy of the fit of the estimated terrain profile (in relation to LS 

estimation); however, the improvement is negligible. As for the estimated vegetation cover 

profiles, the fit accuracy becomes even worse. The results of the robust M-estimation are much 

worse than the results of Msplit estimation. One can say that in the case of the presented 

heterogeneous data, Msplit estimation overperforms not only LS estimation but also conventional 

robust solutions. 

 

Table 2. Accuracy of fit of the profiles determined by M-estimation in Variants A, B, and C 

Method Parameter Variant A Variant B Variant C 

Huber 
( )  (1)

ˆ mRMSD H  0.038 0.041 0.100 

( )  (2)
ˆ mRMSD H  0.338 0.335 0.341 

Tukey 
( )  (1)

ˆ mRMSD H  0.045 0.046 0.102 

( )  (2)
ˆ mRMSD H  0.331 0.330 0.333 

 

The second example considered here concerns the determination of a beam deformation by 

applying the TLS technique. Such an approach is very useful in many practical problems, such 

as when steel beams are parts of roof constructions and are often out of the reach of conventional 

measurement methods (Gordon and Lichti 2007; Cabaleiro et al. 2015). Here, we consider the 

case study presented in the latter paper. Thus, let the steel beam of 5870 mm length be deformed 

under the asymmetric load of 4 kN (at 1940 mm) and 2 kN (at 3810 mm). The beam deformation 

was measured by applying the contact instruments at five chosen points (located at the center 

of the beam flange), resulting in the following beam deflections: 0.9 mm (at 100 mm), 21.5 mm 

(at 1940 mm), 21.9 mm (at 2935 mm), 19.2 mm (at 3810 mm), 1.0 mm (at 5770 mm). Such 

values are a base for computing the reference polynomial (the fourth-degree polynomial model 

that reflects the actual beam deflection). Such a polynomial can be estimated using simulated 

TLS data by assuming that the accuracy of measurements is 2 mm and the resolution 10 mm. 

Thus, one considers 587 points placed randomly on the beam surface with random errors 

normally distributed with the assumed standard deviation. One can find the full description of 

the experiment in (Cabaleiro et al. 2015). 

The TLS measurements of a beam would result in a homogeneous point cloud. Thus, such 

data should not be processed by using Msplit estimation. Let us now assume that some 

observations are outlying. Here, one can consider two possible sources of outliers: 

measurements of construction elements different from the beam under investigation and 

measurements of contaminations of the beam surface (like dirt, peeling paints, corrosion). Thus, 

we consider three variants of the simulated observation sets: Variant A and B – contain one or 
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two groups of 50 ”strange” observations, respectively (the ”strange” observations can be 

regarded as outliers of high magnitudes), Variant C – 20% of the beam observations are 

additionally contaminated by gross errors from the interval 3 mm,10 mm  (simulating the 

measurements of the beam contamination – outliers of low or moderate magnitude). The 

simulated observation sets are shown in Fig. 3. 

 

 
Fig. 3. Simulated observation sets in Variants A, B, and C 

 

Let now the beam deflection be modeled by applying fourth-degree polynomials, which 

stems from the theoretical consideration of beam deflection under the load (e.g., Gordon and 

Lichti 2007; Holst et al. 2014). Let the polynomial coefficients be estimated by applying both 

variants of Msplit estimation and LS estimation just for comparison. The main difference 

between that example and the previous one is that we now are interested in estimating only one 

surface (the beam flange). It means that in the case of Msplit estimation, one should consider 

only one solution; the second one is out of interest as describing the location of outlying 

observations. The choice of the correct solution is rather apparent; one should take the 

polynomial in which the graph is located lower. 

The estimation results, namely the polynomial models of the beam deformation, are 

presented in Fig. 4. Msplit estimation variants overperform LS estimation in Variants A and B, 

which means that they can both cope with high-magnitude outliers. One can also notice that 

AMS estimation provides significantly better results than SMS estimation in Variant B. In 

Variant C, the model obtained by applying SMS estimation seems worse, contrary to AMS 

estimation, which still provides a good solution. SMS estimation has “problems” with modeling 

the beam deflection in its first half. It probably stems from the location of multiple outliers in 

that data part and the method's sensitivity to such an observation type. It is not surprising that 

LS estimation cannot deal with outliers of a high magnitude; hence its results in Variants A and 

B are far from the reference model for both polynomial variants. In Variant C, the result is much 

better and very close to the reference model; however, it is worse than the model obtained from 

AMS estimation. 
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Fig. 4. Simulated profile P and estimated ones in Variants A, B, and C 

 

To compare the fit of all estimated models in the reference one, let us compute ( )ˆRMSD H  

using the formula of Eq. (11) using 60 points ( )60n =  uniformly located on the beam. The 

respective values are presented in Table 3. One can conclude that in Variant A the best models 

are provided by SMS estimation, in Variants B and C – AMS estimation. Generally, AMS 

estimation provides the models for which the fit accuracy is almost the same in all variants. 

 

Table 3. Accuracy of fit of the profiles in Variants A, B, and C 

Method 
( )  ˆ mmRMSD H  

Variant A Variant B Variant C 

LS estimation 22.4 35.6 1.5 

SMS estimation 0.2 2.3 4.1 

AMS estimation 0.3 0.4 0.3 

 

Considering the occurrence of outliers within the data, let the simulated sets be processed 

by applying robust M-estimation methods in the way applied in the previous example. The 

accuracy of the fit for both methods and all variants is presented in Table 4. All models 

determined are better fitted than the models of LS estimation, respectively. There is no doubt 

that the Huber method application provides the best models for M-estimation. It can deal with 

outliers of high magnitude much better than the Tukey method. The accuracy of the model 

determined by the application of the Huber method is like the accuracy of AMS estimation 

models in Variants A and B and lower in Variant C. In the paper context, AMS estimation can 

be an alternative to conventional robust methods when outliers have a high magnitude. It can 

provide better results when the outlier magnitude is low.  
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Table 4. Accuracy of fit of the profiles determined by M-estimation in Variants A, B, and C 

Method 
( )  ˆ mmRMSD H  

Variant A Variant B Variant C 

Huber 0.2 0.3 1.1 

Tukey 11.1 26.7 1.3 

 

4. CONCLUSIONS 

 

The paper concerns processing heterogeneous data from modern measurement techniques 

like LiDAR systems, including ALS and TLS. It might also concern other techniques providing 

big data observation sets, e.g., global navigation satellite systems (GNSS) observations. In the 

case of LiDAR data, heterogeneity of observations results from measuring different objects, 

namely the study object and “obstacles.” Heterogeneity of the observation data might also result 

from different accuracy of observation groups or occurrence of outlying observations. Since 

modern techniques have become more popular nowadays, the problem of processing 

heterogeneous data is essential.  

One of the possible ways to process heterogeneous data is the application of  

Msplit estimation. The paper presents two numerical examples in that context. The first one 

concerns estimating two versions of the functional model parameters, which is a natural 

approach in Msplit estimation. The observation sets contain two main groups of observations: 

terrain measurements and vegetation cover measurements. The obtained outcomes show that 

Msplit estimation, especially AMS estimation, can provide better results than the conventional 

methods. AMS estimation shows its low sensitivity to outlying observations, and it 

overperforms the conventional robust methods. The second example concerns data, including 

the measurement of the study object and additional outlying observations. Hence, one is 

interested in estimating only one parameter version (describing the study object). The second 

solution of Msplit estimation should be ignored as describing the location of outliers. This time 

AMS estimation also provides the best results that are similar in accuracy to conventional robust 

methods if the outliers are high magnitude. If data are disturbed by outliers of lower magnitude, 

then AMS estimation overperforms the traditional methods.  

An alternative for Msplit estimation would be data cleaning methods. One can say that in the 

second example in Variants A and B, it is easy to separate the measurements of the beam from 

outlying observations (measurements of other construction elements). As mentioned in the 

Introduction, such methods do not always succeed, e.g., it would be hard to separate regular 

observations from outliers in Variant C in the second example or Variants B and C in the first 

example. In that context, the application of Msplit estimation seems advisable. 

Generally, Msplit estimation can be recommended to process heterogeneous data consisting 

of two (or more) observation groups for which the functional model parameters are estimated. 

The method in question can also be a good alternative to conventional robust methods, 

especially if outliers have low magnitude or high share within the observation set. 
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