

XXVII FIG CONGRESS 11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Set provert for dynamic datums in Trimble software

Christopher PEARSON, New Zealand chris_pearson2@trimble.com Sebastien VIELLIARD, France sebastien_vielliard@trimble.com

Coordinates transformed to common reference epoch 2000 for New Zealand using deformation model cGNSS for active control

Deformation models

correct for tectonic motion between the epoch of measurement and the National datum Reference epoch

Euler Poles

Average Velocity only Velocity + EQ +PS Distortion grid: Displacement between t and reference epoch

NAD83 (2011) CONUS

- HTDP3.4 has 3 new earthquake models
 - Ridgecrest earthquake in California and 2 in Alaska
 - Ridgecrest earthquake caused surface rupture so we used 2 nested grids with a high resolution patch near the epicenter

mm

Implementation in Trimble Software

Our generic time dependent transformer can convert: $(X, Y, Z)_{ITRF}$ at eom from or to $(X, Y, Z)_{IOCAL}$ at eor

- It uses **data files** modeling: Datum transformation (14 p transformation or grid) Displacement models (with secular velocity & earthquake patches)

Models addition & updates are easy deploying new data files.

Map of displacement models

Euler Poles Velocity grid Velocity + EQ +PS **Distortion grid: Displacement** between t and reference epoch

XXVII FIG CONGRESS 11–15 SEPTEMBER 2022 Warsaw, Poland

Conclusions

- TGL has been upgraded to support time dependent datum transformations
- Includes a grid based algorithm to support deformation models
 - Based on the approach used by Land Information New Zealand
 - It can be used to support any national deformation model
- It is consistent with the OSG's proposed standard for deformation models
- Future deformation models should follow OGC standard for easy and consistent deployment across software vendors

