

Application of DTM in Urban Planning Process to Improve Air Quality

Łukasz Kulesza Kielce University of Technology Poland

Introduction

- A. Air pollution problem in urban areas:
 - Increasing emission of various types of pollutants.
 - Especially dangerous is particulate matter of a very small size (less than 2.5 µm).
 - Morbidity of asthma and other respiratory diseases increases.
- B. Quality of urban air depends on several individual factors:
 - Emission field characteristics.
 - Location.
 - Topography.
 - Meteorology.
- C. The influence on the structure of pollutants, their spatial distribution and values have two main factors:
 - Usage of coal as fuel burned for heating used in residential sector.
 - Growing number of motor vehicles on public roads.

50 most polluted cities in the European Union

Poland

10

20

PM2.5, µg/m3

30

40

50

0

Vidin, Bulgaria Dimitrovgad, Bulgaria Opoczno, Poland

- A. Reasons for the increased
 - Low quality of the fuel
 - Improper combustion.
 - Outdated or inefficient
 - Lack of proper insulation
- B. Type of pollution released:
 - Particulate matter (esp
 - Carbon monoxide.
 - Sulphur oxides.
 - Heavy metals.
 - B(a)P.
- C. World Health Organization
 50 urban centres in Europe
 Poland.

- A. Air pollution problem in smaller towns located in mountainous areas:
 - Accumulation of air pollution in the surface layer.
 - Topography affects the movement of pollutants to higher troposphere levels.
 - The concentration of pollutants diminishes considerably with increasing altitude above ground level.
 - Wind speed increases with the altitude above ground level
- B. Conclusion: higher situated areas are more favourable from the point of view of the location of buildings, in particular industrial plants.
- C. It is important to consider the terrain shape at the stage of planning the development of an urban area.
- D. Unfortunately, no such statutory obligation has been introduced.

Study Area

- A. City Name: Żywiec
- B. Location:
 - Valley of Soła and Koszarawa Rivers.
 - Surrounded by mountain ranges.
 - Very unfavourable.
- C. Limitation: administrative boundaries of the City (urban planning document is adopted by the Commune Council)

- A. DTM:
 - GRID interval 100 m.
 - Free of charge.
 - Distributed by the Main
- B. Urban planning document:
 - Study of Conditions and
 - Adopted by the City Co
 - Date of the adoption: 30
 - Status: official, public, v
 - Description: contains th with the spatial develop adopted solutions.
 - Binds municipal authori Plans.

Methods Prerequisites and assumptions

- A. Modelling the spread of air pollutants is a very complex issue:
 - The choice of the prognostic model is crucial in order to properly estimate the propagation of pollutants.
 - Structure and accuracy of the input data (emission, meteorological, topographic, physiographic) is an important source of potential uncertainty of generated forecasts.
 - Analytical description of the processes of pollution spread (transport, dispersion, deposition, physico-chemical changes) introduces an even wider range of uncertainty.
- B. Simplified approach has been proposed based on previous studies:
 - Can be successfully applied to any area.
 - No need for expensive and long-lasting process of collecting the necessary data.
 - Enables assessing the potential of possible changes in existing planning documents.
 - Synthetic indicator enabling quantitative evaluation of results

Results Determining zones based on DTM

- A. Research area has been divide Legend:
 - Unfavourable (Zone 1).
 - Advantageous (Zone 2).
 - Very favourable (Zone 3).
- B. Limit values between zones:
 - Average height calculated grid cells.
 - Arithmetic mean consideri elevation.

Zone number	Zone description	H _{min} [m]	H _{max} [m]
1	unfavourable	338	400
2	advantageous	400	596
3	very favourable	596	853

Table 1. Height range of zones

Zone 1 Zone 2 Zone 3 Orthophoto

Results Analysis of urban planning documents

- A. Areas defined on the basis of the Study of Conditions and Directions of Spatial Development:
 - Single-family and multi-family housing, service, hotel, guest house, production, storage and warehouse (Intendent development).
 - Existing development.
 - Arable land and land intended for afforestation (Potential area).
- B. Intendent development cover both existing and planned development.
- C. Potential areas may be changed for development purposes.
 - Majority of agricultural and intended for forestation land in Zone 2.
- D. The major part of planned and existing development is located in areas below the average height (zone 1).

Layer	Zone 1	Zone 2	Zone 3
Existing Development	82.3%	17.6%	0.1%
Intendent Development – Existing Delevopment	78.2%	21.8%	0.0%
Arable Land	49.4%	50.6%	0.0%
Land for Afforestation	28.9%	71.1%	0.0%

9/13

Results Elevation Planning Potential Index

Synthetic indicator enabling quantitative evaluation of results:

$$EPPI = \frac{A_{a_23} + A_{af_23}}{A_{d_1} - A_{e_1}} * 100\%$$

EPPI = 26.6%

The scope of potential changes is quite wide.

- A. Empirical studies have shown that the wind force is proportional to the height above the ground level.
- B. Wind is an important factor that contributes to the faster dispersion of air pollution generated by the combustion of fuels for heating purposes.
- C. The work focused on towns located in mountainous areas and proposed a method for assessing existing planning documents from the point of view of introducing changes to improve dispersion of pollution.
- D. Current provisions of Polish law do not impose an obligation to take into account terrain elevation in spatial planning.

- E. Most of the built-up areas and areas designated for development are located in areas below the average height.
- F. Established Elevation Planning Potential Index allows to obtain a quantitative evaluation of the results to identify the potential of eventual changes in existing planning documents.
- G. Algorithm can be successfully applied to any area and there is no need for expensive and long-lasting process of collecting the necessary data for estimating the propagation of pollutants.

Thank you

Łukasz Kulesza

Kielce University of Technology

I.kulesza@tu.kielce.pl