

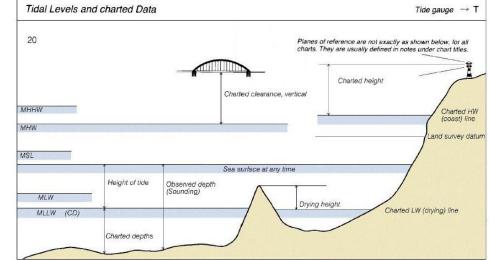
Pacific Community Communauté du Pacifique

Bathymetry and Vertical Datum's

Pacific Height Datum Workshop

Pacific Geospatial and Survey Council Suva, 26 November 2016

Dave Mundy – Senior Hydrographic Surveyor <u>davidm@spc.int</u>

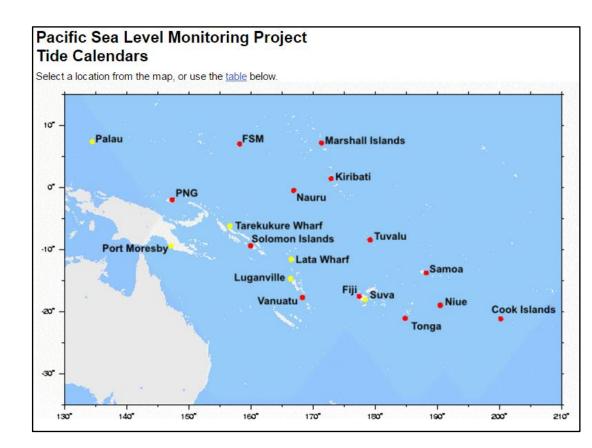


Outline:

- Bathymetry Importance of Datum's
- Vertical Reference Surface Application to bathymetry
- Options for the Region

- Datum's provide a "zero point" or reference for:
 - Sea level measurements;
 - Bathymetry datasets;
 - Nautical Charts
 - Depths
 - Elevations
 - Tide Tables

Pacific Communitu


Communauté du Pacifique

Not all use the same datum

• Example – Pacific Sea Level Monitoring Project

- Well established
- Very precise
- Widely used
 - Long term
 monitoring
 - Real time
 - Navigation
 - Tide Calendars

• Example – Official Nautical Tide Tables

- SOLAS compliant
- Legally required by SOLAS vessels
- Based on data from various sources with Varying accuracy*
- Narrow application
 - Navigation

ADMIRALTY Tide Tables

North Pacific Ocean (Including Tidal Stream Tables)

United Kingdom Hydrographic Office NP206 Volume 6 2017

FRIDAY

0612 1221 1842 SATURDAY

TIDAL PREDICTIONS FOR COOK ISLANDS - RAROTONGA

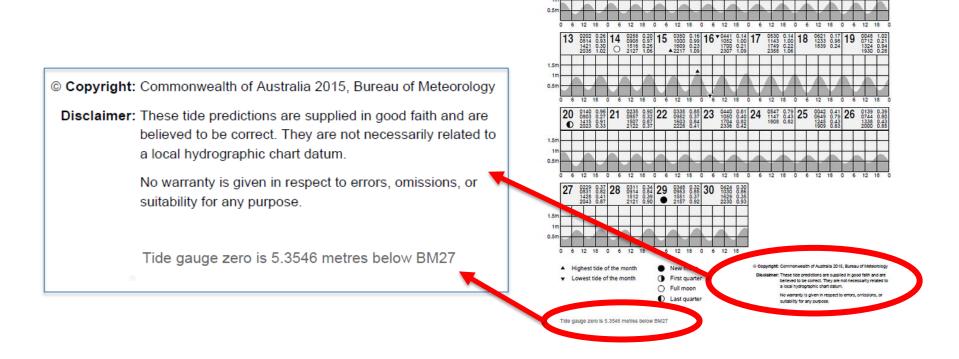
WEDNESDAY

1014
1630
2243

THURSDAY

10

TUESDAY


NOVEMBER 2016 Local Standard Time

MONDAY

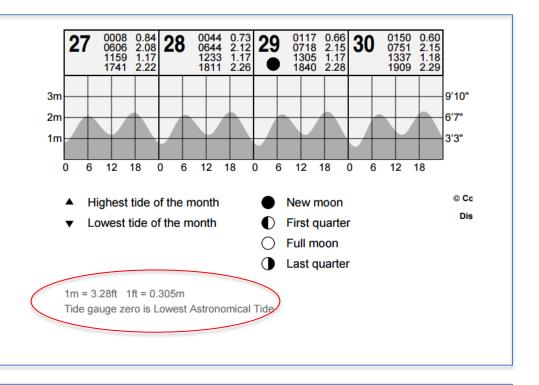
SUNDAY

• Know your Datum!

Be aware of the small print...

• Know your Datum!

Not all Tide <u>Gauges</u> are referenced to a common datum...

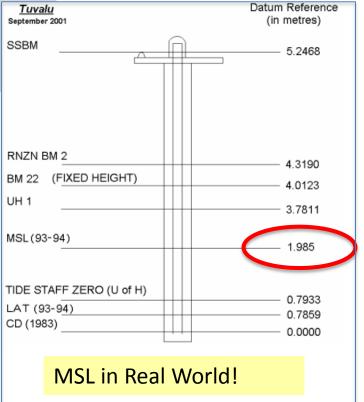

	COUNTRY	DATUM
1	Apia, Samoa	Tide gauge zero is 2.0229 metres below BM201
2	Port Vila, Vanuatu	Tide gauge zero is 3.6037 metres below VAN1
	Luganville,	Tide Prediction Datum is 2.681m below Station
	Vanuatu	Benchmark BM B
3	Funafuti, Tuvalu	Tide gauge zero is 4.0123 metres below BM22
4	Nuku'alofa, Tonga	Tide gauge zero is 2.0686 metres below TON1
5	Suva, Fiji	Tide gauge zero is 3.206 metres below Longitudinal Pillar
	Lautoka, Fiji	Tide gauge zero is 3.1285 metres below BM3243
6	Lombrum, PNG	Prediction Datum is 0.136 metres above TGZ, TGZ is
		2.5011 metres below PNG2
	Port Moresby,	Tide gauge zero is 4.086 metres below PSM16566
	PNG	
7	Niue	Tide gauge zero is Lowest Astronomical Tide
8	Nauru	Tide gauge zero is 7.2929 metres below NAU1
9	Majuro, RMI	Tide gauge zero is 2.6535 metres below MAR2
10	Malakal, Palau	Tide gauge zero is Lowest Astronomical Tide
11	Betio, Kiribati	Tide gauge zero is 3.5334 metres below KIR1
12	Honiara, Solomon	Prediction Datum is 0.294 metres above TGZ, TGZ is
	Islands	4.3102 metres below FBM4
13	Pohnpei, FSM	Tide gauge zero is Lowest Astronomical Tide
14	Raratonga, Cook	Tide gauge zero is 5.3546 metres below BM27
	Islands	

• Know your Datum!

Not all Tide <u>Tables</u> are referenced to a common datum...

UKHO and PSLMP Tide
 Tables for Palau for same
 period

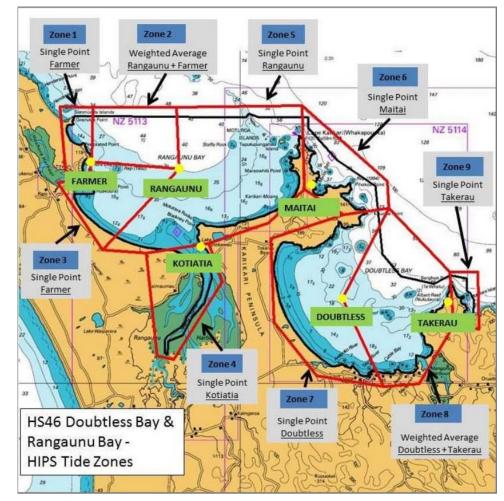
6820 Malakal Harbour is a Secondary Harmonic port. The tide type is Semi-Diurnal.		27/11/2016		28/11/2016			29/11/2016		
HAT 2.1 m		Time	Height		Time	Height		Time	Height
MHWS 1.8 m MHWN 1.4 m	Lliab	6:11 AM	1.6 m	Lliab	6:48 AM	1.6 m	Lliab	7:22 AM	1.6 m
MSL 1.11 m	High	5:43 PM	1.7 m	High	6:11 PM	1.7 m	High	6:40 PM	1.8 m
MLWN 0.8 m MLWS 0.3 m	الملا	12:10 AM	0.3 m	Low	12:45 AM	0.2 m	Low	1:19 AM	0.2 m
LAT -0.2 m	Low	11:58 AM	0.7 m	Low	12:34 PM	0.7 m		1:08 PM	0.7 m


• Know your Datum!

And then there are **Nautical Charts** and Chart Datum!

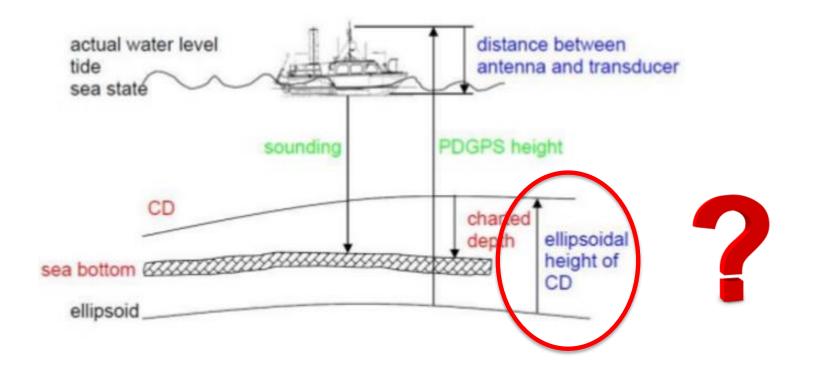
- Normally same as LAT
- BUT not always!

6744 Funafuti is a Seconda The tide type is Semi-Diurn HAT 2.2 m	
MHWS 1.8 m MHWN 1.3 m MSL 1.00 m MLWN 0.7 m MLWS 0.2 m LAT -0.2 m	MSL in relation to Chart BA2983 Reference (CD)
ML inferred	s referred to Datum of Soundings

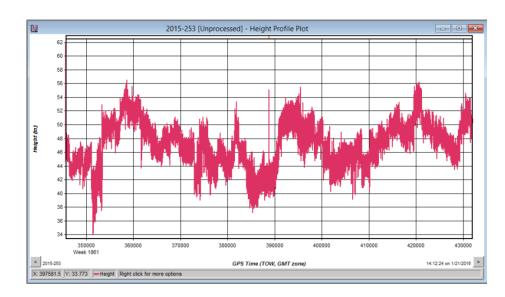

Place	Lat	Long	Height	datum		
Flage	S	E	MHWS	MHWN	MLWN	MLWS
Funafuti	8°31′	179°12′	1.8	1.3	0.7	0-2

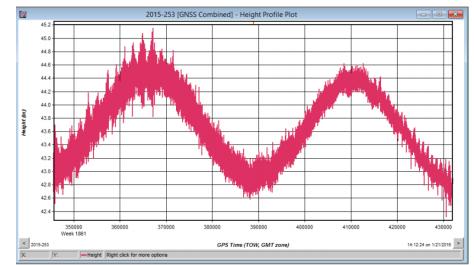
Traditional Tidal Reduction Methods

- Can be Complex
- Costly
- Error prone
- Time consuming
- Frustrating!



- GNSS used for last 20+ years
 - GNSS integral tool in bathymetric data collection
 - Great for horizontal positioning but why not vertical?
- Past Limitations
 - Vertical accuracies not sufficient
 - Inability to account for vertical difference between normal orthometric (eg MSL) and the ellipsoid (GNSS height reference)




 Using GNSS for vertical height instead of traditional tidal observations

- At last Accurate vertical GNSS height!
 - Real time and post processed kinematic techniques
 - Improved wide-area
 GNSS correction
 services
 - Applicable worldwide

GNSS Vertical Accuracy

- But....
 - National reference geoids not available for most countries
 - Local separation models gen applicable to small areas
 - Inability to realise significant benefits over traditional techniques

• What Benefits?

Increased Accuracy

- Elimination of co-tidal uncertainty (error)
- Elimination of tidal obs uncertainty
- Elimination of vessel draught uncertainty

Enable significant efficiencies

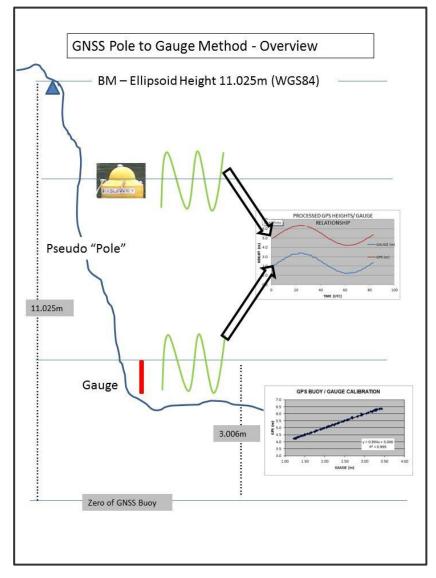
- Less time est tidal infrastructure
- Less time processing of tidal data

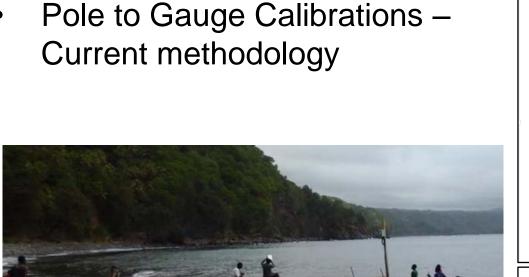
Cost savings

Reduced expenditure on tidal equipment

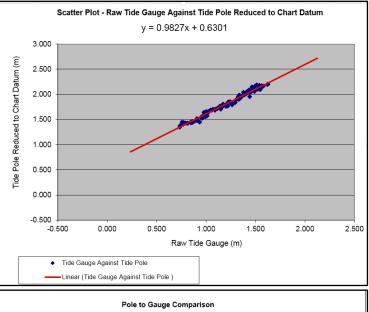
Reduced footprint

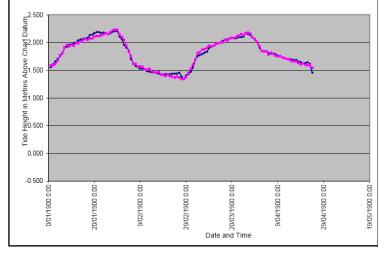
- Minimal terrestrial footprint (if any)
- Reduced access issues

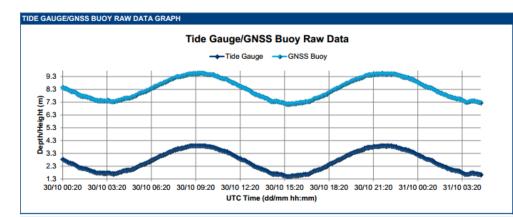

Total Vertical Uncertainty	Swath Wic	Swath Width			
Uncertainty Source	Depth Independ Error	Independent			
Vessel Draught Setting	0.02				
Variation of Vessel Draught Setting	0.01				
Vessel Settlement and Squat	0.02				
MBES Instrument Accuracy	0.05	±			
Roll Uncertainty					
Heave Uncertainty	0.05				
Sound Velocity Measurement					
Sound Velocity Spatial Variation					
Sound Velocity Temporal Variation					
Tide Data Accuracy	0.05				
Co-Tidal Uncertainty	0.10				
Combined Total	0.14	±			
Requirement IHO S44 1a	0.50	±			

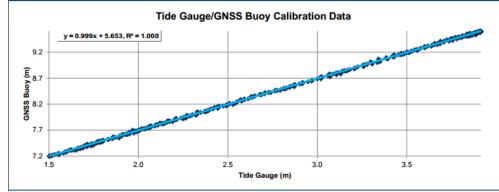

- What can we do?
 - Use GNSS to assist with traditional Tide Methodology
 - Consider Local Separation Models
 - Future proof
 - Investigate options for regional model

Pole to Gauge Calibrations using GNSS

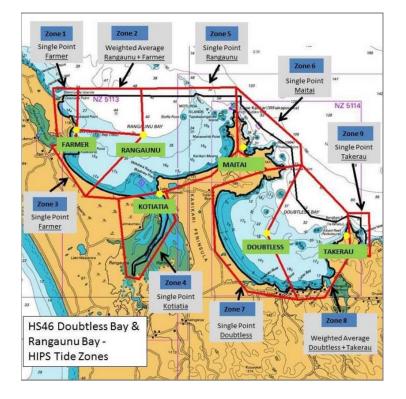

- Direct relationship between gauge and BM's
- Eliminate need for Tide Pole
- Increased flexibility in gauge location
- Greater accuracy (longer periods, 1hz = small SD)

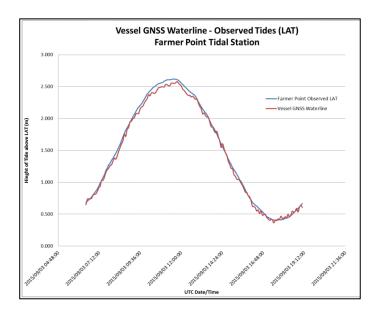






 Pole to Gauge Calibrations using PPK GNSS


TIDE GAUGE/GNSS BUOY CALIBRATION DATA GRAPH


- Consider Local Separation Models
 - Based on combined tide and ellipsoid height measurements
 - Offshore seabed tide gauges
 - GNSS Data Buoys

- Local Separation Models
 - Based on combined tide and ellipsoid height measurements

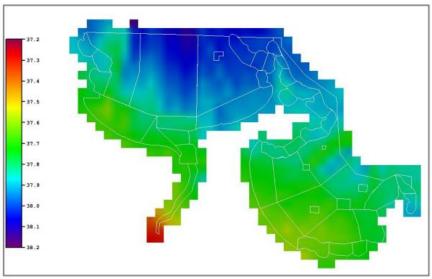


Figure 13 : Derived LAT to WGS84 Geoid-Ellipsoid Separation Model

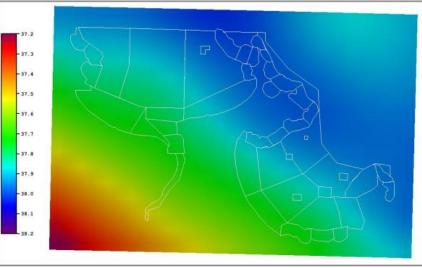


Figure 14 : NZGeoid09 Geoid-Ellipsoid Separation Model (LAT to MSL Shift Applied)

- National / Regional Separation Model
 - Additional Benefits (over local models)
 - Little or reliance on tidal data
 - More consistent / seamless bathymetry
 - What is realistic National, Regional or ??
 - What work and resources are required to achieve (eg gravity)
 - Cost benefit?
 - Timeframe?

- National / Regional Separation Model
 - Options to achieve?
 - Development partner assistance
 - Contribution via future requirements for sea level measurements
 - GNSS data acquisition for all TG benchmarks
 - Consideration of offshore seabed TG and GNSS buoy
 - ??????

QUESTIONS?