

Associate Professor University of Twente ITC Faculty m.n.koeva@utwente.nl

UNIVERSITY OF TWENTE.

Photograph: NASA/REID WISEMAN/EPA

Innovations in Land Administration 3D Cadastre, AI4LA and Digital Twins

HIGH TECH HUMAN TOUCH

WHAT?

"Digital replica of the physical living environments that supports decision-making through the seamless integration of a myriad of data and analytics techniques.

Physical City

As such, DT is not a mere geometric (2D and 3D) representation of static assets but a dynamic/live model that represents their past, current, and future states." https://www.utwente.nl/en/digital-society/research/themes/digital-twin-geohub/

https://www.utwente.nl/en/digital

society/research/digitalisation/digi tal-twin-geohub/

Virtual City

WHAT?

2D/3D city model 2D/3D Cadastral model Real-time data

User

requirements

Continuous data update

Open data

What if scenarios?

To answer major societal question to solve wicked problems with strong geospatial relationships:

- Land rights, equality
- 3D valuation/taxation
- Urbanization
- Climate change
- Disaster management
- Improved living condition
- Pandemics

Real World

PEOPLE LAND AND URBAN SYSTEMS (PLUS)

- How Digital Twins can help?
- How photogrammetry and RS can help? \bullet
- How geospatial innovations can help? \bullet
- How AI or VR can help?

EU H2020 – ICT – 2015 **Research and Innovation Action** Duration: 48 months 2016-2020 Consortium: 8 partners Budget: 3.9 M Euro

www.its4land.com

Publish and Share LADM geocloud services/Common User Interface

UAV Orthogenerator

Boundary Delineator

www.its4land.com

SmartSkeMa

UAV (drones) 4LA

www.its4land.com

UNIVERSITY OF TWENTE.

AI4LA

www.its4land.com

- LA needs are less vertexes and regularized closed vector polygons
- Fully Convolutional Networks (FCN)
- Discrete raster probability output

Input

CNN output

UNIVERSITY OF TWENTE.

+ regularized

Aircraft/aerial image 2017 RGB 0.29 m spatial resolution 50 km² area coverage March/April

UAV image 2019 RGB 0.11 m spatial resolution 9 km² area coverage November

https://2023.ieeeigarss.org/view_paper.php?PaperNum=3925#top

Cadastral boundaries Reference dataset

Multitask Learning

- U-Net
- Frame Field Learning
- Active Contour Model

ice ntour(int) OUTPUT POLYGONS Align spatial gradients with frame field

Red: distance to ground truth **Blue:** regularizers

Model	Dataset	PoLiS	loU
With FFL	UAV	2.81	0.84
	Aircraft	8.64	0.79
No FFL	No FFL UAV		0.81

UNIVERSITY OF TWENTE.

Output

3D Cadastre

DIGITAL TWINS FOR PEOPLE, LAND AND URBAN SYSTEMS (PLUS)

Challenges for Updating 3D Cadastral Objects using LiDAR and Image-based Point Clouds

Part of: 5th International FIG Workshop on 3D Cadastres list the conference papers

Title Challenges for Updating 3D Cadastral Objects using LiDAR and Image-based Point Clouds

Author Koeva, Mila Oude Elberink, Sander

Challenges with dynamic objects

3D Cadastre

DIGITAL TWINS FOR PEOPLE, LAND AND URBAN SYSTEMS (PLUS)

Temporal challenges

3D Indoor Cadastre

DIGITAL TWINS FOR PEOPLE, LAND AND URBAN SYSTEMS (PLUS)

Basic classes of the LADM (ISO 19152:2012)

Change from a nursing house to a residential apartment (Zaken, 2015)

3D Valuation

DIGITAL TWINS FOR PEOPLE, LAND AND URBAN SYSTEMS (PLUS)

6,000.02 - 6,500.01

11,000.02 - 12,000.01

2,000.02 - 13,000.01

7.500.02 - 20.000.01

- Ying, y. (2019). Assessment of 2D and 3D methods for property valuation using remote sensing data at the neighborhood scale in Xi'an, China.
- Li, r. (2019). Developing a 4D property valuation model based on geospatial data at city scale (Xi'an, China).
- Zhang, J. (2019). Developing a comprehensive framework for property valuation using 3D and remote sensing techniques in China

Xi'an, Shaanxi China 10752 km²

279663 images

3D Valuation

850×680 pixels

Statistical analysis

road	0.158660963	road	0.105463	road	0.196006	road	0.156193
sidewalk	0.113625668	sidewalk	0.109153	sidewalk	0.103422	sidewalk	0.071012
building	0.423386096	building	0.082081	building	0.128036	building	0.118205
wall	0	wall	0.055955	wall	0.020605	wall	0.024045
fence	0	fence	0.117591	fence	0.021621	fence	0.006676
pole	0.015886631	pole	0.005906	pole	0.006631	pole	0.005099
traffic_light	0	traffic_light	0	traffic_light	0.000261	traffic_light	0
traffic_sign	0.001790374	traffic_sign	0.015653	traffic_sign	0.000798	traffic_sign	0.013386
vegetation	0.088211765	vegetation	0.488402	vegetation	0.291022	vegetation	0.404764
terrain	0	terrain	0	terrain	0.005897	terrain	0
sky	0.182660963	sky	0.002631	sky	0.200021	sky	0.10917
person	9.63E-05	person	0.001867	person	0.00468	person	0.005005
rider	0	rider	0	rider	0.000699	rider	0.001433
car	0	car	0.007677	car	0.006094	car	0.071042
truck	0	truck	0.006347	truck	0.000907	truck	0.008571
bus	0	bus	0	bus	0.003658	bus	2.14E-06
motorcycle	0.015328342	motorcycle	0.000116	motorcycle	0.006661	motorcycle	0.004958
bicycle	0.000352941	bicycle	0.001157	bicycle	0.001925	bicycle	0.000439

Street visual features and property value using DL

DIGITAL TWIN – ENSCHEDE URBAN HEAT ISLAND

DIGITAL TWIN – ENSCHEDE URBAN HEAT ISLAND

(Koopmans et al., 2020)

- Body Temperature = Ext. T° +
 Int.T° + Sweat + clothing
- Male 35yo, 1.75, 75kg, cloths =0.9,
 Walking at 4km/h

PET	Physiological Stress Grade	
18°C	Slight Cold Stress	^
22002	No Thermal Stress	
23°C	Slight Heat Stress	
29°C	Moderate Heat Stress	Existing Grades
35℃	Strong Heat Stress	
41°C	Extreme Heat Stress (LV1)	↓ ↓
46°C	Extreme Heat Stress (LV2)	1
51°C	Extreme Heat Stress (LV3)	New Required Grades
>56°C	Extreme Heat Stress (LV4)	↓ International Action

 $PET_{sun} = -13.26 + 1.25T_a + 0.011Q_s - 3.37\ln(u_{1,2}) + 0.078T_w + 0.0055Q_s \ln(u_{1,2}) + 5.56\sin(\phi) - 0.0055Q_s \ln(u_{1,2}) + 0.0056Q_s \ln(u_{1,2}) + 0.0056Q_$

 $PET_{shade, night} = -12.14 + 1.25T_a - 1.47\ln(u_{1.2}) + 0.060T_w + 0.015S_{vf}Q_d + 0.0060(1 - S_{vf})\sigma(T_a + 0.0060(1$

DIGITAL TWIN PET CALCULATION FOR UHI MITIGATION

Video

Online tool

DIGITAL TWIN – ENSCHEDE GROUND WATER TABLE MONITORING & TREE ROOTS DEVELOPMENT

DIGITAL TWIN GROUND WATER TABLE MONITORING

MEASUREMENTS: **REAL TIME DATA** MONITORING OF: GWT DEPTH WEATHER APPLIED TO: UPDATES: PHYSICAL DIGITAL WORLD> TWIN CONSIDERS: CONSIDERS: GROUND WATER TABLE. GEOMETRY LOCATION TREES (ROOTS) BUILDINGS STATIC+REALTIME WATER PUMPS OBJECTS TRASH CANS. PIPES DUCTS CABLES SUPPORTS: INFORMATION TO CONTROL: ASSETS GROUNDWATER TABLE WARNINGS WATER PUMPS

DIGITAL TWIN GROUND WATER TABLE MONITORING

DIGITAL TWIN – ENSCHEDE TREE ROOTS DEVELOPMENT

[Handbook of Trees 2022]

De beschermingszone strekt zich minstens uit tot 1,5 tot 2 m buiten de kroonprojectie, wat nog altijd kleiner is dan de wortelprojectie.

Hoogte, H

ПС

DIGITAL TWIN – ENSCHEDE TREE ROOTS DEVELOPMENT

(Ortega-Córdova, 2018)

The available tree points per neighbourhood in Enschede

DIGITAL TWIN WASTE MANAGEMENT

Input	A geospatial vector point layer with the attributes: Waste daily production (in m ³), Current waste generation (of the simulated hour), Accumulated waste (m ³), Container Volume (m ³), Saturation (%)
Output	Random accumulation of waste in each container location Accumulated waste Saturation of each container

DIGITAL TWIN GENERATIVE DESIGN FOR WALKABILITY

- Kumalasari, D.; Koeva, M.; Vahdatikhaki, F.; Petrova Antonova, D.; Kuffer, M. Planning Walkable Cities: Generative Design Approach towards Digital Twin Implementation. Remote Sens. 2023, 15, 1088. https://doi.org/10.3390/rs15041088
- Kumalasari, Dewi (2022) Generative Design for Walkable Cities: a case study of Sofia. (Master's thesis, University of Twente).
 Generative Design for Walkable Cities: A Case Study of Sofia, Kumalasari, D.; Koeva, M.; Vahdatikhaki, F.; Petrova-Antova, D., SCSD 2022

UNIVERSITY OF TWENTE.

ПС

DIGITAL TWIN UAV FOR DT

kml_1813

Attributes		
Construction material	EDIF_ALVE	
AREA_M2	45.149906	
Number of floors	5	
House number	111	
DSM values	805.40811	
DEM values	793.33454	
ID_3Dbuilding	1790	
Additional information		

- Khawte, Sharvi Samir (2022) 3D modelling of slums based on UAV data. (Master's thesis, University of Twente).
 Digital Twin Creation for Slums in Brazil Based on UAV Data, Khawte, S.; Koeva, M.; Gevaert, C. M.; Elberink, S. O.; Pedro, A. A., 3D GeoInfo 2022

- Kenzhebay, Meruyert (2022) Planar roof structure extraction from Very High-Resolution aerial images and Digital Surface Models using deep learning. (Master's thesis, University of Twente).
- Golnia M. (2021). Building outline delineation and roofline extraction: A deep learning approach (Master's thesis, University of Twente).
- Wufan Zhao, Claudio Persello, Alfred Stein, Building outline delineation: From aerial images to polygons with an improved end-to-end learning framework, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 175, 2021

Class	Precision	Recall	F1-score
Eave	0.82	0.81	0.81
Ridge	0.49	0.61	0.55
Hip	0.23	0.51	0.32
Other	0.97	0.96	0.96
Total	0.63	0.72	0.66

BUILDING ROOF STRUCTURE DELINEATION

GROUNDTRUTH

MODEL TRAINED ON ENSCHEDE (EDGES)

MODEL TRAINED ON ENSCHEDE (POLYGONS)

GROUNDTRUTH

MODEL TRAINED ON ENSCHEDE

MODEL TRAINED ON

MODEL TRAINED ON ENSCHEDE+SOFIA

VECTORIZATION

MODEL TRAINED ON ENSCHEDE+SOFIA (EDGES)

ON

MODEL TRAINED

RESULTS

Boulew

Artez Hogeschool voor de Kunsten

rplein

DIGITAL TWIN SOLAR POTENTIAL ESTIMATION

- Amiranti, A. Y., Koeva, M. N., Kuffer, M., van Altena, V., & Post, M. (2020). Investigating standardized 3D input data for solar photovoltaic potentials in the Netherlands. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 639-646.
- Amiranti, A. Y. (2020). Investigating 3D input data for solar photovoltaic potentials in The Netherlands (Master's thesis, University of Twente).

DIGITAL TWIN ASSET MANAGEMENT

DIGITAL TWIN ASSET MANAGEMENT

Data collection

- Cameras on Service Trucks
- Semi-Automatic Recognision

DIGITAL TWIN SOLAR POTENTIAL ESTIMATION

State electricity company of Indonesia (PLN)

IESR Indonesia

Ministry of State-owned (BUMN)

Ministry of National Development Planning Agency (Bapenas)

BRIN Indonesia

IPB University

Irradiation per window

DIGITAL (T)WIN IT

Explore the possibilities of Digital Twins

Learn more about digital replicas of the physical living environments that supports decision-making through the seamless integration of a myriad of data and analytics techniques.

Free & open f everyc

19-10-2023

Workshops on Digital Twins & infrastructure

Create your Digital Twin city through gaming

Panel discussion and speed dating for fruitful collaborations

(+)

6

Q

20-10-2023

Interact with Digital Twins through gaming

Attend open panel discussions

Jointly discuss the possibilities with Digital Twins

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

