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Abstract

Kalman filter is an important tool for deformation analysis combining information on object
behaviour and measurement quantities. It is applicable to the four well-known deformation
models. Kalman filtering usually requires white measurement and process noise. Due to
electronic measurement devices with high sampling rate used nowadays, time dependent
systematic deviations arise in neighbouring epochs in a similar way, resulting in auto-
correlation. Especially in case of GPS measurements deviations due to multipath and signal
propagation are changing slowly, and thus the assumption of white noise is not justified. To
eliminate this deficiency within a shaping filter the state vector in Kalman filter is augmented
and thus formulating an adequate noise process.

In this paper the modification of Kalman-Filter algorithm with a shaping filter for coloured
measurement noise is presented together with an example for deformation analysis using GPS
measurements. The differences to an approach neglecting auto-correlation are shown.

1. Kalman-filtering in deformation analysis

Kalman filter is an important tool for deformation analysis combining information on object
behaviour and measurement quantities. System and measurement equation are combined in a
well-known algorithm for estimating an optimal state vector x, containing parameters describing
deformation behaviour (Welsch et. al., 2000). Due to recursive algorithm –working from epoch
k to k+1- Kalman-filter is applicable in real time. In (1) time discrete system equation is given.
Further derivations of  (1) will be presented in paragraph 4.
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with

x(k): State vector T(k): Transition matrix

u(k): Control input, regulating variable B(k): Input coupling matrix

w(k): System noise S(k): System noise coupling

Table 1 shows subdivision of 4 deformation models according to system theory, which are also
used in deformation analysis (Welsch, Heunecke, 2001). System equation (1) is derived from
the dynamic system. Therefore it corresponds to the dynamic model. It is missing in kinematic
model B(k)⋅u(k), because no reasons for deformation are considered in the model. It is missing
in static model T(k)⋅x(k), because the object is reacting immediately to changes of input. There
is no memory. In the identity model there are no causes for deformations, and transitions matrix
simplifies to identity matrix I.
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   Deformations are functions of acting forces

   no  yes

 Deformations are  no  Identity Model  Static Deformation Model

 functions of time  yes  Kinematic Deformation Model  Dynamic Deformation Model

   Descriptive Models  Causative Models

Table 1: Classification of deformation models (Kuhlmann, Pelzer, 1 997)

Additionally to this state vector x is related linearly to measurements l with design matrix A. εεεε is
the measurement noise:
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If w and εεεε are normally distributed white noise processes state vector estimation is optimal (no
bias, minimal variance) (Grewel, Andrews, 1993). Due to electronic measurement devices with
high sampling rate used nowadays, time dependent systematic deviations arise in neighbouring
epochs in a similar way, resulting in auto-correlation. So white measurement noise is not
fulfilled. Time varying correlation of GPS measurements are presented in (Schwieger, 1999). In
this paper a strategy to overcome this deficiency in Kalman-filter will be shown.

2. Description of measurements

Figure 1: Measurement
of baseline
with PDGPS

On the roof of the institute building a short baseline of approximately 7m marked with tripods
was built up and observed with Leica® SR530-receiver with AT502-antennas (Figure 1) The
sampling rate was 0,2 s and the measurement time 70 min. During measurement the antenna
height of one point was changed step by step with a crank every two minutes in steps of
3,2 mm. The baseline was calculated with differential carrier phase solution in post-processing
using both frequencies. Figure 2 shows the changing in measured height component and true
deformation. The goal is the estimation of the deformation process in a Kalman-filter using the
measurements mentioned.
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Figure 2: Measurement of changing of height component and true deformation

As it will be shown later the stochastic model of observations is essential for the deformation
model in Kalman-filter. Thus the same baseline was observed in the same way but both
antennas were fixed. The sampling rate was 1 s and the measurement time 7 hours. Figure 3
shows the result of n = 26000 observations. Observation deviations are rising up to 10 cm,
mainly resulting from multipath (Schwieger, 1999) or (Georgiadou, Kleusberg, 1988).
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Figure 3: Determination of stochastic model: changing of ellipsoidal height of fixed rover
station

3. Determination of stochastic model

3.1. Elementary error model

Deviations of measurements can be sub-divided in elementary errors, each with the expectation
value zero. Some of these errors arise in a systematic manner, because they influence
observations taken in an other time or location in a similar way (correlating errors). The others
vary from time to time in a random way (non-correlating errors) (Schwieger, 1999). One
example for correlating errors in case of GPS-measurements is the multipath effect. The
deviation in pseudo-range is almost identical between two observations with a time difference



of some tenth of a second. Other examples are propagation errors in troposphere and orbit
errors. The magnitude of the sum of non-correlating errors and correlating errors can be
described by standard deviations σδ and σ∆ . The latter one also needs an information about
changing in time to describe the stochastic model of observations.
Following (Schwieger, 1999) it can be stated that GPS measurement deviations are correlated.
In case of short baselines and short measurement periods deviations are following a Gauß-
Markov-process with correlation function
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Thus the stochastic model of the above specified measurements is given by
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3.2. Parameter estimation of stochastic model

Assuming a Gaussian white noise process with variance s 2 the covariance matrix of
observations is 

Σ ll

Σ ll = σ2 I. Then mean value of n numbers and corresponding variance is given by
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As well known the variance is reduced by n. The numerator in (5) is the sum of elements of .
In case of coloured measurement noise (4) this leads to
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Taking the observation vector of Figure 3 new samples can be generated by calculating mean
values of different numbers m. For instance for m = 5 this leads to a sample with 5200 elements.
In each new sample with different m, a second mean value and with residuals to this mean value
an empirical variance can be calculated which measures the theoretical variance Figure 4 for
averaged observations.
Figure 2 shows the numbers. It can be seen that the standard deviation is decreasing with rising
m but not as much as for white noise, indicating the phenomena of auto-correlation.
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Figure 2: Empirical standard deviation from mean value of m observations



The unknown parameters of the stochastic model σδ, σ∆ and α  in (6) can be estimated by
adjustment by observation equations with these “observed” variances. In the stochastic model of
this adjustment it has to be introduced that the empirical variances are functionally correlated
and that there are different degrees of freedom. Due to the high degree of freedom the
theoretical χ2-distributuion of variances is neglected (Niemeier, 2002). Hence variance
estimation is rough.

Estimated value Standard deviation

σδ 4.3 mm 0.92 mm

σ∆ 12.5 mm 0.84 mm

α 0.005 1/s 0.0010 1/s

Table 2: Estimated parameter of stochastic model

To give a better impression about this numbers, table 3 shows the correlation coefficient for
different time differences between two observations. There is high auto-correlation, numerical
values of long term movement of measurement deviations (Figure 2). It can also be seen that the
assumption of white noise is fulfilled in practice for time differences of more than 5 minutes.

∆t 1 sec 5 sec 30 sec 1 min 2 min 5 min 10 min

ρ 0.89 0.87 0.77 0.66 0.49 0.20 0.04

Table 3: Correlation coefficient of two GPS-observations for different time differences

4. State vector augmentation, shaping filter

As shown there is coloured measurement noise, thus prerequisite of white noise for Kalman-
Filter is not fulfilled. For the introduction of correlated noise in a Kalman-Filter a shaping filter
is necessary (Schrick, 1977). Basic idea is the formulation of a second process in the system
equation besides the deformation process. This second process is a linear dynamic system and
excited by a white noise process. The output is the coloured noise process of the measurement
(Huep, 1986).

For better understanding it is useful to know that system equation (1) is a state space
representation of a dynamic system. If ordinary differential equations are given describing the
behaviour of the object, introduction of state variables leads to an ordinary vector differential
equation of first order. (1) is the piecewise solution of this equation (Isermann, 1988).

Continuing this approach a representation of a shaping filter as an ordinary vector differential
equation of first order is necessary. Then both dynamic systems can be combined in one
equation where the homogenous part is presented in (7). The index 1 is indicating the
deformation process and 2 the shaping filter. F is called system matrix.
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To get a time discrete solution as in (1) piecewise solution is necessary. In case of coloured
measurement noise both differential equation are independent so they can be solved separately.
For coloured system noise, not treated in this paper this procedure is not valid.

For a Gauss-Markov-Process with auto-correlation function (3) the following differential
equation representing a linear dynamic system is suitable (Huep, 1986)
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Piecewise solution leads to the following equation as second part of the system equation

)()()1( 222 kwekxekx tt ⋅+⋅=+ ∆⋅−∆⋅− αα (9)

where the state variable x2 describes the long term movement of correlating measurement
deviations. The system noise w2 is a white noise process with variance σ∆

2.

5. Results and conclusion

For the above described deformation a random-walk-process (identity model) or a kinematic
model is possible, since there are no acting forces available. In case of identity model system
noise w1 should correspond to antenna motion. According to (Pelzer, 1987) system noise should
be of the same magnitude as the deformation between two epochs (∆t = 0,2 s). Here the antenna
height was manipulated by a crank in steps of 3,2 mm which took about 0,3 s and so
σw1 = 2 mm was chosen. This leads to the following system equation:
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The observed changing of height l has to match with antenna motion x1 together with the state
variable of the shaping filter x2. ε contents non-correlating measurement deviations with
variance σδ

2. This leads to the following measurement equation:
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Figure 5: Parameter estimation in Kalman-filter (identity model) with shaping filter

Figure 5 shows the result of the deformation analysis. Estimation follows deformation in
general, but there a still some long term deviations. Measurement noise is not completely
reduced. During the procedure no significant innovation –difference between prediction with
system equation and measurement equation- was detected. That means that the chosen
functional and stochastic models correspond with reality. For statistical test of innovation see
(Welsch et. al., 2000).
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Figure 6: Parameter estimation in Kalman-filter (identity model) without shaping filter



To emphasise the quality of deformation estimation Figure 6 shows the result without shaping
filter. Here the system equation is the first line of (10) and measurement equation is

)1()1()1()1()1( 1 +++⋅=+++=+ kkkεkxkl εxA . (12)

Variance of measurement noise is –non optimal- σε
2 = σ∆

2 + σδ
2. The estimated deformation is a

little bit smoother than the measurement but follows it in general. Any changing of σε does not
change this, only the smoothing effect varies. That shows that in this case it is not possible to
formulate an adequate deformation model without shaping filter. Since there is no state variable
which can absorb long term variation of measurement deviations estimation follows
measurement.

As a conclusion following statements can be made:
• For measurements with high sampling rate often auto-correlation occur.
• For GPS-measurements auto-correlation is significant.
•  In case of auto-correlation standard deviation is not sufficient for stochastic model.

Parameters describing temporal behaviour of correlation are necessary.
• State vector augmentation in Kalman-filter is suitable if coloured noise is used.
•  Neglecting auto-correlation in Kalman-filter leads to parameter estimation not

corresponding to motion of object.
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