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SUMMARY  
 
Analysis of geodetic monitoring records, in the type of time series, can sometimes be simple, 
if for instance data have a clear trend and their noise-to-signal ratio is small.  
 
In the cases of measurements of small-amplitude, of high noise-to-signal ratios, reflecting 
superimposition of different signals, spectral analysis techniques can provide the best results. 
In this paper we review techniques which permit to identify periodicities or hysterises in 
time-series, and decompose them in periodic signals, even in the case data are unevenly 
spaced and time series short. The evaluation of a monitoring record from the Ladon Dam, 
Greece, is presented as a case study. 
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1.  INTRODUCTION 
 
Geodetic monitoring, and especially studies of deformation of the ground and of structures is 
based on measurement of certain physical variables using various types of instruments. 
Analysis of such measurements forming time series on the basis of mathematical and 
statistical techniques provides answers to questions such as “what is rate of the tectonic 
displacement in a certain area?”, “what is the response of a dam to the filling of its 
reservoir?”, or “is a certain landslide stable?”. Physical measurements, however, reflect a 
superimposition of different signals including random errors (Fig. 1), and consequently the 
aim of any investigator is to separate and analyze these signals. 
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Fig. 1: The form of time series is usually complicated and does not permit easy modeling of physical 
phenomena. For instance, the analysis of time series (a) shows that they do not testify to a single 
signal but the sum of 3 individual signals: a linear trend (b), two sinusoids (c) and (d) and noise (e).  
 
In some case, a certain signal is dominant in the time series and can be easily identified using 
simple techniques such as polynomial fitting or filtering using moving averages. An example 
is the time series of Fig. 2, representing the EDM distance change between a monitoring 
station on a landslide and a reference station on stable ground. A close-up of the first segment 
in the record (1978-1981) clearly indicates a linear trend (R2=0.999). After this trend is 
removed, a nearly-periodic trend in the residuals is observed, and after the time-series is 
cleaned for outliers (residuals with amplitude ≥3σ), the noise-to-signal ratio in the time series 
is negligible (±10mm/600mm) and hence the landslide movement can be regarded as 
essentially linear.  
 
In some cases, however, the noise-to-signal ratio in the time series is high, measurements are 
unevenly distributed over time, and seem to reflect a superimposition of various signals, 
some periodic (Fig. 3); for instance stresses related to fluctuations of the level of a water 
reservoir or atmospheric effects in GPS measurements. In such cases simple techniques for 
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the analysis of signals are not useful, and decomposition of measurements to various signals 
can only be based on spectral analysis techniques. This approach will be analyzed below. 
 

 
Fig. 2: (a) Time series of the distance change of a control station of a landslide in Greece from a 
reference station, (b) A segment of the time series shown in (a), first period of measurements, 10 Nov 
1978 to 16 Sep 1980, 88 epochs of measurement over a period of 676 days. All measurements are 
included, with the exception of a blunder. A linear trend is evident (R2=0.999), (c) residuals of the 
time series of (b) after the linear trend is removed. The standard deviation of a single observation is 
σ=4.5mm, but if the series is “cleaned” for the two outliers (peak values at day 376 and 641), 
σ=3.9mm. (After Stiros et al., 2004) 
 
 
 
 
Fig. 3: Time series representing geodetically derived 
deflection of a control station on the crest of the 
Ladon Dam (Greece). Some oscillations are indicated 
but the small amplitude of the displacements does not 
permit to easily identify a possible pattern.  
 
 
2.  SIGNAL ANALYSIS – FIRST STEPS 
 
When a time series in the form of that shown in Fig. 3 is to be analyzed, the first step is to 
identify a possible trend, and remove it (e.g. after fitting a polynomial, an exponential curve, 
etc., or their combination). In Fig. 1 for instance, after the removal of the linear trend, the 
remaining time series will consist of a superimposition of the signals of Figs. 1(c),(d),(e). 
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2.1  Auto-correlation 
 
A next step is to identify whether the new time series contains periodic signals. This can be 
checked using the Autocorrelation function (Box and Jenkins, 1976). This function is defined 
by the coefficients of linear correlation (autocorrelation coefficients) between the points 
corresponding to the common parts of the original time series f(t) and another one, f(t+lag) 
for various values of lag. If the correlogram, i.e the graph of the autocorrelation coefficients 
versus lag has at least a quasi-periodic form, it testifies to periodicity in f(t) (Fig. 4). A 
requirement for these computations is that f(t) consists of equidistant data. If not, a new time 
series is formed using interpolation techniques. 
 
2.2  Cross-correlation  
 
A frequently arising problem is whether there is relationship between two variables reflected 
as a phase between two time series f(t), g(t) arising from measurements of two variables. For 
instance, if there is a hysterisis between the fluctuations of a reservoir level and the 
deformation of a dam or the rainfall and the activation of a landslide. Cross-correlation 
analysis can provide an answer to such problems.  
 
Cross-correlation is a standard method of estimating the degree to which two series are 
correlated. This method is equivalent to the method of the auto-correlation but in this case 
data from two different time series are correlated (Box and Jenkins, 1976).  
 
A cross-correlogram, a graph composed of pairs of numbers reflectors the linear correlation 
coefficients between the values of function f(t+lag) and g(t) for various values of lag is 
formed. A max value of c, at a lag = a, if any exists, may idicate a certain hysterisis and a 
possible causative relationship between f(t) and g(t) (Fig. 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: The autocorrelation analysis. The correlation between the values of the time series f(t) and 
f(t+lag) is calculated for various values of lag. If the plot of the autocorrelation coefficient versus the 
lag is of oscillatory form, it reveals the presence of periodicity in f(t). 
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Fig. 5: Cross-correlation of two time series f(t) and g(t). Each value of g(t) is correlated with f(t+lag). 
The computed cross-correlation coefficients are then plotted vs lag. The maximum value in the plot 
indicates the time delay a, where maximum correlation is achieved.  
 
3.  SPECTRAL ANALYSIS 
 
If a periodicity is documented, the next step is to analyze the time series in a sum of periodic 
signals, and estimate their period and amplitude. This can be done either using the Fourier 
transforms (mainly DFT) or in the case of non-equidistant data with algorithms such as the 
Lomb normalized periodogram (a method to analyze a signal into a sum of trigonometric 
terms using least square techniques) or by fitting a polynomial containing trigonometric terms 
to the time series. 
 
3.1  Fourier Analysis 
 
The spectrum of discretely sampled processes is usually based on procedures employing the 
Fast or Discrete Fourier Transform (FFT/DFT), the latter in the case of discrete signals. This 
approach to spectrum analysis is computationally efficient and produces reasonable results 
for a wide range of signal processes. In spite of these advantages, there are several limitations 
in the analysis of short data records (Table II; Kay and Marple, 1981) as well as the 
requirement for equidistant data. In this last case, two ways to skip this problem in the case of 
data, is either an interpolation or setting missing values equal to zero. Generally, such 
techniques are not satisfactory since long gaps in the data often produce a spurious bulge of 
power at low frequencies (Press et al., 1988). Additionally, most available FFT computer 
programs require that the number of data N to be analyzed is a power of 2, i.e. N = 2k. In a 
different case, either some measurements are discarded, or additional zero values are added 
so that the new number of measurements is a power of 2; a process leading to lower quality 
results (Yfantis and Borgman, 1981). 
 
3.2  Lomb Normalized Periodogram 
 
To overcome the difficulties that are introduced when applying the FFT method to unevenly 
spaced data, the Lomb normalized Periodogram can be used. This technique was developed 
by Lomb (1976) partly based in part on earlier work by Vanicek (1969). The equation of the 
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Lomb normalized periodogram is identical to an equation obtained if the harmonic content of 
a data set, at a given frequency ω is obtained by linear least-squares fitting to the model  
    h(t) = Acosωt + Bsinωt (eq. 1) 
(Press et al., 1988). Obviously this last method provides results superior to the FFT method 
for it focus on observed values, and not on sampling intervals. 
 
3.3  Fitting a Polynomial with Trigonometric Terms 
 
This is a technique based on least-squares method to approximate a discrete signal with a 
polynomial containing 2n trigonometric terms, i.e. a function F of the form  
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where P: a polynomial function of time, T: period, θ: phase, i=1,…n (Kay and Marple, 1981). 
Various functions are being tested in order to identify which one best fits the data using the 
trial-and-error technique.  
 
4.  A CASE STUDY: THE LADON DAM 
 
The Ladon dam, on Ladon River, is a medium size (101.5m and 56m crest length and height 
respectively) concrete gravity dam, constructed between 1950 and 1955 in SW Peloponnese. 
The geodetic monitoring record of the Ladon Dam consists of the horizontal and vertical 
displacements of six control points established at the crest of the dam and the reservoir level 
fluctuations during the period 1968 - 2001. The time-series of the displacements make the 
analysis of the dam not an easy task: the time series contain just 35! values while the 
amplitude of the displacements is up to 7mm, though statistically significant (see Pytharouli 
et al., 2003; 2004). In order to investigate which is the effect of the fluctuations of the 
reservoir level on the dam signal analysis techniques were used.  
 
In this case study, we focus on horizontal and vertical displacements of a control point in the 
middle of the crest of the dam and the reservoir level. 
 
4.1  Formation of Evenly Spaced Time Series 
 
Because the majority of our data was not equidistant, a requirement for methods such as the 
Discrete Fourier Transforms we replaced the original time series with time series containing 
both raw data and “pseudo – observations”, the latter predicted from a 3rd order polynomial 
fitting. Thus 3 additional data sets were formed containing 136 values (1968 – 2001). This is 
the simplest way of interpolation providing an acceptable fitting to the raw data and 
preserving spikes.  
 
4.2  Autocorrelation Analysis 
 
The set of 3 time series derived from polynomial fitting was used in this analysis because of 
the requirement for equidistant observations (Press et al., 1992). The sinusoidal type of the 
autocorrelation function (Fig. 6) in all data sets revealed the presence of periodicity in our 
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data, and made necessary the application of spectral analysis techniques in order to define 
that periodicity. 
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Fig. 6: Autocorrelation plots for horizontal and vertical displacements of control point C3 and of the 
reservoir level. In all plots the sinusoidal-type of the autocorrelation function reveals the presence of 
periodocity.  
 
4.3  DFT Analysis 
 
DFT was applied to the set of timeseries containing predicted equidistant data, as in the 
autocorrelation analysis. The DFT analysis identified more than one dominant frequencies 
(Fig. 7) in each data set. Yet among them a common frequency f = 0.0833 (1/month) was 
found. This frequency corresponds to a dominant period of 12 months. 
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Fig. 7: Spectra plots of (a) horizontal deflections, (b) vertical displacement of control point C3 and (c) 
of the reservoir level fluctuations. More than one dominant frequencies are identified but among them 
there is a common frequency f = 0.0833 (1/month) corresponding to a period of 12months. Results are 
however noisy, and do not permit safe conclusions. 
 
4.4  Lomb Normalized Periodogram Analysis 
 
Our analysis based on this method indicated that horizontal deflections, vertical 
displacements and the reservoir level (i.e. independent variables) have the same dominant 
period equal to 12 months (Fig. 8). This result was deduced for all 3 sets of raw data 
analyzed.  
 
4.5  Fitting of a Polynomial with Trigonometric Terms 
 
We tested various functions in order to identify which one best fits our observations of dam 
displacement using the trial-and-error technique. All functions tested independently on the 
basis of their correlation coefficient provided dominant periods in the range between 11.08 – 
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12.56 months, i.e. close to the value of 12 months. The model with the best fit to the data had 
two dominant periods with values 11.08 and 12.53 months respectively (Fig.9). Such adjacent 
values for the dominant periods were probably the result of errors during the measurements 
or the calculation process and correspond to one and only value of 12 months. 
  
 
 
 
 
 
 
 
 
Fig. 8: Power Spectra of horizontal deflections and vertical displacements of control point C3 and the 
reservoir level based on the Lomb algorithm and raw data. It is shown that both horizontal and 
vertical displacements and the reservoir level are characterized by the same fundamental frequency f 
= 0.00833 that corresponds to a 12-month period. This result is far more clear than that of DFT. 
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Fig. 9: Horizontal deflections of control station C3 (raw data) and predicted values of best fitting 
model with two periods and the residuals vs. time. The fit is quite good and the unknown periods of 
the model are calculated equal to 11.08 and 12.53 months. This is probably evidence of a single 
period of 12 months modified by measurement and calculation errors. 
 
5.  DISCUSSION AND CONCLUSIONS 
 
Spectral analysis is a useful tool in the cases of periodic, multi-parameter and noisy time 
series which can be decomposed in their component signals.  
 
In the case of the Ladon Dam, spectral analysis of a small-amplitude monitoring record 
without an apparent trend revealed that both horizontal and vertical displacements correspond 
to periodic functions with a period of 12 months, equal to the period of the fluctuations of the 
reservoir level. A causative relationship between hydraulic load and dam deformation was 
therefore inferred. 
 

0,00 0,05 0,10 0,15 0,20 0,25 0,30
0

1

2

3

4

5

6

 

 

0,00 0,05 0,10 0,15 0,20 0,25 0,30
0

2

4

6

8

 

 

0,00 0,05 0,10 0,15 0,20 0,25 0,30
0

2

4

6

8

10

12

 

 Horizontal deflections Vertical displacements Reservoir Level 

frequency (months-1) 

L
om

b 
pe

ri
od

og
ra

m
 

am
pl

itu
de

 



 

TS1 – Data Processing 
Stella Pytharouli, Villy Kontogianni, Panos Psimoulis and Stathis Stiros 
Spectral Analysis Techniques in Deformation Analysis Studies 
 
INGEO 2004 and FIG Regional Central and Eastern European Conference on Engineering Surveying 
Bratislava, Slovakia, November 11-13, 2004 

9/10

REFERENCES 
 
Box G. E. P and G. Jenkins (1976), Time Series Analysis: Forecasting and Control, Prentice 

Hall 
Kay S. M. and Marple S. L. (1981), Spectrum Analysis – A modern perspective, Proc. IEEE, 

Vol. 69, No. 11, pp. 1380 – 419 
Lomb N. R. (1976), Least-Squares Frequency Analysis of Unequally Spaced Data, 

Astrophysics and Space Science, Vol. 39, pp. 447 – 62 
Press W. H., S. A. Teukolsky, W. T. Vellerling, B. P. Flannery (1988), “Numerical Recipies 

in C. The Art of Scientific Computing”, Cambridge University Press 
Pytharouli, S., Tsitsos V., Skourtis C., Kontogianni V. and Stiros S. (2003), “Rigidity Control 

of a Thin Reinforced Concrete Dam”, Proc. of 11th FIG Int. Symp. On Deformation 
Measurements, Santorini, Greece, 2003, pp. 629 - 634  

Pytharouli, S. and Stiros S. (2004), ”Ladon Dam (Greece) Deformation and Reservoir Level 
Fluctuations: Evidence for a Causative Relationship from the Spectral Analysis of a 
Feodetic Monitoring Record”, Engineering Structures, submitted 

Stiros, S., Vichas, C and Skourtis, C, 2004, “Landslide monitoring based on geodetically 
derived distance changes”, J Surv Eng. (ASCE), Nov 2004, in press 

Vanicek P. (1969), “Approximate Spectral Analysis by Least – Squares Fit”, Astrophysics 
and Space Science, Vol. 4, pp. 387 – 391 

Yfantis E. A. And Borgman L. E. (1981), ”Fast Fourier Transforms 2 – 3 – 5”, Computers 
and Geosciencies, Vol. 7, pp. 99-106 

 
ACKNOWLEDGMENTS 
 
This article is a contribution to the research program PENED of the General Secretariat of 
Research and Technology. The Public Power Co and C. Skourtis are thanked for providing 
unpublished data. 
 
BIOGRAPHICAL NOTES 
 
Stella Pytharouli, Dipl. Eng. MSc, is a PhD student of the Dept. of Civil Engineering, Patras 
University, Greece. Her research activities in the Geodesy Lab., involve analysis of geodetic 
data from geotechnical engineering structures with main interest on dam deformation and 
GPS monitoring data analysis.  
 
Villy Kontogianni, Dipl. Eng. MSc, is PhD candidate of the Dept. of Civil Engineering, 
Patras University, Greece. Her PhD thesis is the analysis of tunnel deformations monitoring 
data. Her research, in the Geodesy Lab., involves analysis of geodetic data from geotechnical 
engineering structures (tunnels, dams, ground subsidence) and seismic faults activation. 
 
Panos Psimoulis, Dipl. Eng., is a postgraduate student of the Dept. of Civil Engineering, 
Patras University, Greece. His research activities, involve the application of analytical 
methodologies on reconstruction/ design of structures and application of GPS in monitoring 
civil engineering structures. 
 



 

TS1 – Data Processing 
Stella Pytharouli, Villy Kontogianni, Panos Psimoulis and Stathis Stiros 
Spectral Analysis Techniques in Deformation Analysis Studies 
 
INGEO 2004 and FIG Regional Central and Eastern European Conference on Engineering Surveying 
Bratislava, Slovakia, November 11-13, 2004 

10/10

Stathis Stiros, Dipl. Eng. PhD, is Ass. Prof. and director of the Geodesy Lab., Dept. of Civil 
Engineering, Patras University. His research interests include among others deformation 
monitoring and analysis surveys in the field of civil engineering and geology/geophysics. 
 
CONTACTS 
 
Ms Stella Pytharouli 
University of Patras 
Geodesy Lab., Dept. of Civil Engineering, University Campus, 26500 
Patras 
GREECE 
Tel. + 30 2610 996511 
Fax + 30 2610 997877  
Email: spitha@upatras.gr 
 
Dr Stathis Stiros 
University of Patras 
Geodesy Lab., Dept. of Civil Engineering, University Campus, 26500 
Patras 
GREECE 
Tel. + 30 2610 996511 
Fax + 30 2610 997877  
Email: stiros@upatras.gr 


